Amantadine (1‐aminoadamantane hydrochloride) is effective in the prophylaxis and treatment of influenza A infections. In tissue culture this selective, strain‐specific antiviral activity occurs at relatively low concentrations (5 microM or less), which inhibit either the initiation of infection or virus assembly. The data reported here demonstrate that the basis of these actions is similar and resides in the virus‐coded M2 membrane protein, the product of a spliced transcript of RNA segment 7. Mutations which confer resistance to amantadine are restricted to four amino acids within a hydrophobic sequence, indicating that the drug is targetted against the putative membrane‐associated portion of the molecule. The influence of the virus haemagglutinin on the amantadine sensitivity of virus strains implies that the drug may interfere with interactions between these two virus proteins.
BackgroundThe small ruminant parasite Haemonchus contortus is the most widely used parasitic nematode in drug discovery, vaccine development and anthelmintic resistance research. Its remarkable propensity to develop resistance threatens the viability of the sheep industry in many regions of the world and provides a cautionary example of the effect of mass drug administration to control parasitic nematodes. Its phylogenetic position makes it particularly well placed for comparison with the free-living nematode Caenorhabditis elegans and the most economically important parasites of livestock and humans.ResultsHere we report the detailed analysis of a draft genome assembly and extensive transcriptomic dataset for H. contortus. This represents the first genome to be published for a strongylid nematode and the most extensive transcriptomic dataset for any parasitic nematode reported to date. We show a general pattern of conservation of genome structure and gene content between H. contortus and C. elegans, but also a dramatic expansion of important parasite gene families. We identify genes involved in parasite-specific pathways such as blood feeding, neurological function, and drug metabolism. In particular, we describe complete gene repertoires for known drug target families, providing the most comprehensive understanding yet of the action of several important anthelmintics. Also, we identify a set of genes enriched in the parasitic stages of the lifecycle and the parasite gut that provide a rich source of vaccine and drug target candidates.ConclusionsThe H. contortus genome and transcriptome provide an essential platform for postgenomic research in this and other important strongylid parasites.
The macrocyclic lactones are the biggest selling and arguably most effective anthelmintics currently available. They are good substrates for the P-glycoproteins, which might explain their selective toxicity for parasites over their vertebrate hosts. Changes in the expression of these pumps have been implicated in resistance to the macrocyclic lactones, but it is clear that they exert their anthelmintic effects by binding to glutamate-gated chloride channels expressed on nematode neurones and pharyngeal muscle cells. This effect is quite distinct from the channel opening induced by glutamate, the endogenous transmitter acting at these receptors, which produces rapidly opening and desensitising channels. Ivermectin-activated channels open very slowly but essentially irreversibly, leading to a very long-lasting hyperpolarisation or depolarisation of the neurone or muscle cell and therefore blocking further function. Molecular and genetic studies have shown that there are multiple GluCl isoforms in both free-living and parasitic nematodes: the exact genetic make-up and functions of the GluCl may vary between species. The known expression patterns of the GluCl explain most of the observed biological effects of treatment with the macrocyclic lactones, though the reason for the long-lasting inhibition of larval production in filarial species is still poorly understood.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.