We present a time-resolved angle-resolved photoelectron spectroscopy study of IrTe2, which undergoes two first-order structural and charge-ordered phase transitions on cooling below 270 K and below 180 K. The possibility of inducing a phase transition by photoexcitation with near-infrared femtosecond pulses is investigated in the charge-ordered phases. We observe changes of the spectral function occuring within a few hundreds of femtoseconds and persisting up to several picoseconds, which we interpret as a partial photoinduced phase transition (PIPT). The necessary time for photoinducing these spectral changes increases with increasing photoexcitation density and reaches timescales longer than the rise time of the transient electronic temperature. We conclude that the PIPT is driven by a transient increase of the lattice temperature following the energy transfer from the electrons. However, the photoinduced changes of the spectral function are small, which indicates that the low temperature phase is particularly robust against photoexcitation. We suggest that the system might be trapped in an out-of-equilibrium state, for which only a partial structural transition is achieved. arXiv:1801.07979v1 [cond-mat.str-el]
Argon ion kinetic energy spectra at different discharge voltages (between 480 and 600 V) of a commercial cold cathode ion source IQP10/63 are reported. The high kinetic energy cut-off depends on the discharge voltage and the corresponding plasma potential due to excess positive charges which is found to be about 136 V. Exposure of single layer hexagonal boron nitride on rhodium to the beam of the ion source leads to the formation of nanotents, i.e., stable atomic protrusions. A positive bias voltage is applied to the target sample to block the positive ions produced by the ion source. However, application of a positive bias potential (800 eV), which is higher than the kinetic energy cut-off, still allows the formation of nanotents and its observation with scanning tunneling microscopy. This indicates that the ion source also produces neutral atoms with kinetic energies higher than the penetration threshold across a single layer of hexagonal boron nitride. Argon ion kinetic energy spectra at different discharge voltages (between 480 and 600 V) of a commercial cold cathode ion source IQP10/63 are reported. The high kinetic energy cut-off depends on the discharge voltage and the corresponding plasma potential due to excess positive charges which is found to be about 136 V. Exposure of single layer hexagonal boron nitride on rhodium to the beam of the ion source leads to the formation of nanotents, i.e., stable atomic protrusions. A positive bias voltage is applied to the target sample to block the positive ions produced by the ion source. However, application of a positive bias potential (800 eV), which is higher than the kinetic energy cut-off, still allows the formation of nanotents and its observation with scanning tunneling microscopy. This indicates that the ion source also produces neutral atoms with kinetic energies higher than the penetration threshold across a single layer of hexagonal boron nitride.
Electron diffraction is a standard tool to investigate the atomic structure of surfaces, interfaces, and adsorbate systems. In particular, photoelectron diffraction is a promising candidate for real-time studies of structural dynamics combining the ultimate time resolution of optical pulses and the high scattering cross-sections for electrons. In view of future time-resolved experiments from molecular layers, we studied the sensitivity of photoelectron diffraction to conformational changes of only a small fraction of molecules in a monolayer adsorbed on a metallic substrate. 3,3′,5,5′-tetra-tert-butyl-azobenzene served as test case. This molecule can be switched between two isomers, trans and cis, by absorption of ultraviolet light. X-ray photoelectron diffraction patterns were recorded from tetra-tert-butyl-azobenzene/Au(111) in thermal equilibrium at room temperature and compared to patterns taken in the photostationary state obtained by exposing the surface to radiation from a high-intensity helium discharge lamp. Difference patterns were simulated by means of multiple-scattering calculations, which allowed us to determine the fraction of molecules that underwent isomerization.
Hexagonal boron nitride () is the isoelectronic but insulating counterpart of graphene. Like graphene it can easily be grown as high-quality nanotubes or as single layers on metal surfaces. Both materials can be exfoliated or transferred after single-layer growth from suitable substrates onto new surfaces. In view of electronic devices or optical sensors, for instance, the carrier dynamics in the conduction bands determine the device properties. The band edge of the unoccupied band structure of is dominated by two kinds of states, free-electron-like interlayer or interface states and a flat conduction band valley derived from -states. The measurement of excited states and excited-state lifetimes in is the main topic of the present article with a special focus on the dynamics close to the -point. While the conduction band minimum is strongly localised at the boron sites, the charge density of free-electron-like states is outside the planes and is likely to be important for interactions like charge transfer with adjacent layers and substrates. We will review previous efforts to determine the nature of the bandgap and the band structure of unoccupied states with particular emphasis on but not restricted to single-layer epitaxially grown on a Ni(1 1 1) surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.