Apoptosis, necrosis, or autophagy—it is the mode of cell demise that defines the response of surrounding cells and organs. In case of one of the most toxic substances known to date, cadmium (Cd), and despite a large number of studies, the mode of cell death induced is still unclear. As there exists conflicting data as to which cell death mode is induced by Cd both across various cell types and within a single one, we chose to analyse Cd-induced cell death in primary human endothelial cells by investigating all possibilities that a cell faces in undergoing cell death. Our results indicate that Cd-induced death signalling starts with the causation of DNA damage and a cytosolic calcium flux. These two events lead to an apoptosis signalling-related mitochondrial membrane depolarisation and a classical DNA damage response. Simultaneously, autophagy signalling such as ER stress and phagosome formation is initiated. Importantly, we also observed lysosomal membrane permeabilization. It is the integration of all signals that results in DNA degradation and a disruption of the plasma membrane. Our data thus suggest that Cd causes the activation of multiple death signals in parallel. The genotype (for example, p53 positive or negative) as well as other factors may determine the initiation and rate of individual death signals. Differences in the signal mix and speed may explain the differing results recorded as to the Cd-induced mode of cell death thus far. In human endothelial cells it is the sum of most if not all of these signals that determine the mode of Cd-induced cell death: programmed necrosis.Electronic supplementary materialThe online version of this article (doi:10.1007/s00018-015-2094-9) contains supplementary material, which is available to authorized users.
Adipose and muscle tissue – so far underestimated – contribute to the total Cd burden. Cd distribution in testis and kidney correlates with the histologic blood-testis-barrier and renal excretion, respectively.
The deleterious effects of increased cadmium (Cd) serum levels on the cardiovascular system are proven by epidemiological and basic science studies. Cd exposure of animals and humans is known to impair myocardial function, possibly leading to heart failure. This study aims at investigating the effect of Cd treatment on the cardiac system with emphasis on the combined effect of Cd and high serum cholesterol levels as an important cardiovascular risk factor. Detailed analyses of Cd-induced effects on the heart of ApoE-/- mice fed a high fat diet (HFD), ApoE-/- mice fed a normal diet (ND), and C57BL/6J mice fed a ND revealed proinflammatory and fibrotic changes in the presence of cellular hypertrophy but in the absence of organ hypertrophy. Hypercholesterolemia in ApoE-/- mice alone and in combination with Cd treatment resulted in significant cardiomyocyte cell death. Based on further analyses of heart sections, we conclude that severe hypercholesterolemia in combination with ApoE-/- genotype as well as Cd treatment results in necrotic cardiomyocyte death. These data were supported by in vitro experiments showing a Cd-induced depolarization of the mitochondrial membrane and the permeabilization of the plasma membrane arguing for the occurrence of Cd-induced necrotic cell death. In summary, we were able to show for the first time that the combination of high cholesterol and Cd levels increase the risk for heart failure through cardiac fibrosis. This observation could in part be explained by the dramatically increased deposition of Cd in the hearts of ApoE-/- mice fed a HFD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.