Cognitive workload affects operators' performance principally in high-risk or time-demanding situations and when multitasking is required. An online cognitive workload monitoring system can provide valuable inputs to decision-making instances, such as the operator's state of mind and resulting performance. Therefore, it can allow potential adaptive support to the operator. This work presents a new design of a wearable embedded system for online cognitive workload monitoring. This new wearable system consists of, on the hardware side, a multi-channel physiological signals acquisition (respiration cycles, heart rate, skin temperature, and pulse waveform) and a low-power processing platform. Further, on the software side, our wearable embedded system includes a novel energy-aware bio-signal processing algorithm. We also use the concept of application self-awareness to enable energy-scalable embedded machine learning algorithms and methods for online subjects' cognitive workload monitoring. Our results show that this new wearable system can continuously monitor multiple bio-signals, compute their key features, and provide reliable detection of high and low cognitive workload levels with a time resolution of 1 minute and a battery lifetime of 14.58h in our experimental conditions. It achieves a detection accuracy of 76.6% (2.6% lower than analogous offline computer-based analysis) with a sensitivity of 77.04% and a specificity of 81.75%, on a simulated drone rescue mission task. Moreover, by applying our self-aware monitoring to exploit different energy-scalable modes, we can increase battery lifetime by 51.6% (up to 22.11 hours) while incurring an insignificant accuracy loss of 1.07%.
The photoplethysmographic (PPG) signal is an unobtrusive blood pulsewave measure that has recently gained popularity in the context of the Internet of Things. Even though it is commonly used for heart rate detection, it has been lately employed on multimodal health and wellness monitoring applications. Unfortunately, this signal is prone to motion artifacts, making it almost useless in all situations where a person is not entirely at rest. To overcome this issue, we propose SPARE, a spectral peak recovery algorithm for PPG signals pulsewave reconstruction. Our solution exploits the local semiperiodicity of the pulsewave signal, together with the information about the cardiac rhythm provided by an available simultaneous ECG, to reconstruct its full waveform, even when affected by strong artifacts. The developed algorithm builds on state-of-the-art signal decomposition methods, and integrates novel techniques for signal reconstruction. Experimental results are reported both in the case of PPG signals acquired during physical activity and at rest, but corrupted in a systematic way by synthetic noise. The full PPG waveform reconstruction enables the identification of several health-related features from the signal, showing an improvement of up to 65% in the detection of different biomarkers from PPG signals affected by noise.
In the recent Internet-of-Things (IoT) era where biomedical applications require continuous monitoring of relevant data, edge computing keeps gaining more and more importance. These new architectures for edge computing include multi-core and parallel computing capabilities that can enable prevention diagnosis and treatment of diseases in ambulatory or home-based setups. In this paper, we explore the benefits of the parallelization capabilities and computing heterogeneity of new wearable sensors in the context of a personalized online atrial fibrillation (AF) prediction method for daily monitoring. First, we apply optimizations to a single-core design to reduce energy, based on patient-specific training models. Second, we explore multi-core and memory banks configuration changes to adapt the computation and storage requirements to the characteristics of each patient. We evaluate our methodology on the Physionet Prediction Challenge (2001) publicly available database, and assess the energy consumption of single-core (ARM Cortex-M3 based) and new ultra-low power multi-core architectures (opensource RISC-V based) for next-generation of wearable platforms. Overall, our exploration at the application level highlights that a parallelization approach for personalized AF in multi-core wearable sensors enables energy savings up to 24 % with respect to single-core sensors. Moreover, including the adaptation of the memory subsystem (size and number of memory banks), in combination with deep sleep energy saving modes, can overall provide total energy savings up to 34 %, depending on the specific patient.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.