This paper analyzes the effect in a distribution network caused by massive recharging of Plug-in Electric Vehicles (PEV), based on a probabilistic model of consumption for PEV, which is added to the residential demand to evaluate some electrical system parameters, such as voltage levels, technical losses and maximum circuit capacity. Additionally, the behavior of the same parameters is corroborated through a sensitivity analysis, for which the PEV penetration varied between 10% and 100%. Based on these results, possible strategies to reduce the effect of the PEVs connection on safety, reliability and stability of the distribution system are proposed.
This paper presents a methodology to estimate electric energy required by electric vehicles, taking into account driving habits and mobility statistics of private vehicles. Initially, a probability function of accumulated distances that an electric vehicle travels on a normal operation day is developed based on mobility patterns (travelled distances, number of trips, etc.). The obtained information is used to generate probability distributions for travelled distances by vehicles and for energy required by a vehicle after its daily operation. Probability distributions allow assigning to each vehicle a travelled distance and a required energy with a behavior based on real data. From obtained functions, energy required by each electric vehicle is analyzed, which is essential information to evaluate the effect of massive connection to the power grid. In this way, under the proposed methodology it is provided a tool that could predict the amount of energy required by a given quantity of electric vehicles that are connected to the grid. Finally, the proposed methodology was validated in Bogota, Colombia determining the probability distribution of the energy consumed per vehicle.Keywords: Probability Distribution, Travelled Distance, Energy Consumption, Electric Vehicles, Batteries. ResumenEste artículo plantea una metodología para estimar la energía eléctrica requerida por los vehículos eléctricos, teniendo en cuenta los hábitos de conducción y estadísticas de movilidad de los vehículos particulares. Inicialmente se construye la función de probabilidad de las distancias acumuladas que recorre el vehículo eléctrico en un día de operación normal a partir de los patrones de movilidad (distancias recorridas, número de desplazamientos, etc.). Con la información obtenida se generan distribuciones de probabilidad para las distancias recorridas por los vehículos y para la energía requerida por un vehículo luego de un día de recorrido normal. Las distribuciones de probabilidad permiten asignar a cada vehículo, una distancia recorrida y una energía requerida siguiendo un comportamiento basado en datos reales. Con las funciones obtenidas se determina la energía requerida por un vehículo, que es una información indispensable para evaluar el efecto de la conexión masiva de estos en la red eléctrica. De esta manera, bajo la metodología propuesta se provee una herramienta que permite predecir la cantidad de energía requerida por un determinado número de vehículos eléctricos que se conectan a la red. Finalmente, la metodología propuesta se valida en Bogotá, Colombia determinando la distribución de probabilidad que representa la energía consumida por vehículo.Palabras clave: Distribución de Probabilidad, Distancia Recorrida, Consumo de Energía, Vehículos Eléctricos, Baterías.
No abstract
A 51-year-old woman presented with a 2-day history of cutaneous lesions. The lesions were pruritic and they had begun while she was gardening. The patient had no relevant medical history, took no medication and had no history of a previous similar reaction. She had no fever, and was otherwise healthy and well. On physical examination, a localized erythematous papular rash was seen on the patient's right forearm. Dermoscopy showed multiple brown fine lines and red dots (Fig. 1). A biopsy was taken from a lesion. Clinicopathological case ª 2018 British Association of Dermatologists
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.