Zoonoses are infectious diseases transmitted directly or indirectly between animals and humans. Several important zoonotic pathogens colonize farm animals asymptomatically, which may lead to contamination of the food chain and public health hazards. Moreover, routine sampling of carcasses at retail by government authorities over the past 20 years suggests the prevalence of antibiotic resistance in foodborne pathogens has increased. If this continues, antibiotics may be ineffective against such pathogens in the future and alternative approaches, such as phage therapy, may be necessary. Intensive livestock farming is the only realistic way of meeting the demand for meat from an increasing global population and growth in middle class consumers in developing countries, particularly in Asia. This review elaborates on the use of phages to control zoonotic pathogens in intensively-reared livestock (poultry and pigs).
All dsDNA phages encode two proteins involved in host lysis, an endolysin and a holin that target the peptidoglycan and cytoplasmic membrane, respectively. Bacteriophages that infect Gram-negative bacteria encode additional proteins, the spanins, involved in disruption of the outer membrane. Recently, a gene located in the lytic cassette was identified in the genomes of mycobacteriophages, which encodes a protein (LysB) with mycolyl-arabinogalactan esterase activity. Taking in consideration the complex mycobacterial cell envelope that mycobacteriophages encounter during their life cycle, it is valuable to evaluate the role of these proteins in lysis. In the present work, we constructed an Ms6 mutant defective on lysB and showed that Ms6 LysB has an important role in lysis. In the absence of LysB, lysis still occurs but the newly synthesized phage particles are deficiently released to the environment. Using cryo-electron microscopy and tomography to register the changes in the lysis phenotype, we show that at 150 min post-adsorption, mycobacteria cells are incompletely lysed and phage particles are retained inside the cell, while cells infected with Ms6wt are completely lysed. Our results confirm that Ms6 LysB is necessary for an efficient lysis of Mycobacterium smegmatis, acting, similarly to spanins, in the third step of the lysis process.
Background Enteric infections caused by Salmonella spp. remain a major public health burden worldwide. Chickens are known to be a major reservoir for this zoonotic pathogen. The presence of Salmonella in poultry farms and abattoirs is associated with financial costs of treatment and a serious risk to human health. The use of bacteriophages as a biocontrol is one possible intervention by which Salmonella colonization of chickens could be reduced. In a prior study, phages Eϕ151 and Tϕ7 significantly reduced broiler chicken caecal colonization by S. Enteritidis and S. Typhimurium respectively. Methods Salmonella -free Ross broiler chickens were orally infected with S. Enteritidis P125109 or S. Typhimurium 4/74. After 7 days of infection, the animals were euthanased, and 25cm 2 sections of skin were collected. The skin samples were sprayed with a phage suspension of either Eϕ151 ( S. Enteritidis), Tϕ7 phage suspension ( S. Typhimurium) or SM buffer (Control). After incubation, the number of surviving Salmonella s was determined by direct plating and Most Probable Number (MPN). To determine the rate of reduction of Salmonella numbers on the skin surface, a bioluminescent S . Typhimurium DT104 strain was cultured, spread on sections of chicken breast skin, and after spraying with a Tϕ11 phage suspension, skin samples were monitored using photon counting for up to 24 h. Results The median levels of Salmonella reduction following phage treatment were 1.38 log 10 MPN (Enteritidis) and 1.83 log 10 MPN (Typhimurium) per skin section. Treatment reductions were significant when compared with Salmonella recovery from control skin sections treated with buffer ( p < 0.0001). Additionally, significant reduction in light intensity was observed within 1 min of phage Tϕ11 spraying onto the skin contaminated with a bioluminescent Salmonella recombinant strain, compared with buffer-treated controls ( p < 0.01), implying that some lysis of Salmonella was occurring on the skin surface. Conclusions The results of this study suggest that phages may be used on the surface of chicken skin as biocontrol agents against Salmonella infected broiler chicken carcasses. The rate of bioluminescence reduction shown by the recombinant Salmonella strain used supported the hypothesis that at least some of the reduction observ...
Aim Following previous research on improving the cleaning of crates used to transport broiler chickens from the farm to the abattoir, a demonstration project was undertaken to investigate improvements in crate washing on a commercial scale. Methods and Results The soak tank of a conventional crate washing system was replaced with a high‐performance washer fitted with high‐volume, high‐pressure nozzles. The wash water could be heated, and a greatly improved filtration system ensured that the nozzles did not lose performance or become blocked. Visual cleanliness scores and microbial counts were determined for naturally contaminated crates which had been randomly assigned to different cleaning protocols. Conclusions When a combination of mechanical energy, heat and chemicals (i.e. detergent and disinfectant) was used, the results showed significant improvements to crate cleaning. Reductions of up to 3·6 and 3·8 log10 CFU per crate base were achieved for Campylobacter and Enterobacteriaceae, respectively, along with a marked improvement in visual cleanliness. Significance and Impact of the Study Broiler transport crates may become heavily contaminated with faeces and this may contribute to the spread of disease between farms. The results of this trial may be of use in reducing the spread of zoonotic pathogens in the poultry meat supply chain.
This chapter discusses application of natural parasites of bacteria, bacteriophages (phages), as a promising biological control for Salmonella in poultry and swine. Many studies have shown phages can be applied at different points from farm-to-fork, from pre to post slaughter, to control the spread of Salmonella in the food chain. Pre-slaughter applications include administering phages via oral gavage, in drinking water and in feed. Post slaughter applications include adding phages to carcasses and during packaging of meat products. The research discussed in this chapter demonstrate a set of promising data that relate to the ability of phages to reduce Salmonella colonisation and abundance. Collectively the studies support the viability of phage as antimicrobial prophylactics and therapeutics to prevent and control Salmonella in the food chain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.