Modern microtechnology is enabling the channel count of neural recording integrated circuits to scale exponentially. However, the raw data bandwidth of these systems is increasing proportionately, presenting major challenges in terms of power consumption and data transmission (especially for wireless systems). This paper presents a system that exploits the sparse nature of neural signals to address these challenges and provides a reconfigurable low-bandwidth event-driven output. Specifically, we present a novel 64-channel low-noise (2.1 V), low-power (23 W per analogue channel) neural recording system-on-chip (SoC). This features individually configurable channels, 10-bit analogue-to-digital conversion, digital filtering, spike detection, and an event-driven output. Each channel's gain, bandwidth, and sampling rate settings can be independently configured to extract local field potentials at a low data-rate and/or action potentials (APs) at a higher data rate. The sampled data are streamed through an SRAM buffer that supports additional on-chip processing such as digital filtering and spike detection. Real-time spike detection can achieve 2 orders of magnitude data reduction, by using a dual polarity simple threshold to enable an event driven output for neural spikes (16-sample window). The SoC additionally features a latency-encoded asynchronous output that is critical if used as part of a closed-loop system. This has been specifically developed to complement a separate on-node spike sorting coprocessor to provide a real-time (low latency) output. The system has been implemented in a commercially available 0.35-m CMOS technology occupying a silicon area of 19.1 mm (0.3 mm gross per channel), demonstrating a low-power and efficient architecture that could be further optimized by aggressive technology and supply voltage scaling.
Objective. This paper describes the design, testing and use of a novel multichannel block-capable stimulator for acute neurophysiology experiments to study highly selective neural interfacing techniques. This paper demonstrates the stimulator’s ability to excite and inhibit nerve activity in the rat sciatic nerve model concurrently using monophasic and biphasic nerve stimulation as well as high-frequency alternating current (HFAC). Approach. The proposed stimulator uses a Howland Current Pump circuit as the main analogue stimulator element. 4 current output channels with a common return path were implemented on printed circuit board using Commercial Off-The-Shelf components. Programmable operation is carried out by an ARM Cortex-M4 Microcontroller on the Freescale freedom development platform (K64F). Main results. This stimulator design achieves ± 10 mA of output current with ± 15 V of compliance and less than 6 µA of resolution using a quad-channel 12-bit external DAC, for four independently driven channels. This allows the stimulator to carry out both excitatory and inhibitory (HFAC block) stimulation. DC Output impedance is above 1 M Ω. Overall cost for materials i.e. PCB boards and electronic components is less than USD 450 or GBP 350 and device size is approximately 9 cm × 6 cm × 5 cm. Significance. Experimental neurophysiology often requires significant investment in bulky equipment for specific stimulation requirements, especially when using HFAC block. Different stimulators have limited means of communicating with each other, making protocols more complicated. This device provides an effective solution for multi-channel stimulation and block of nerves, enabling studies on selective neural interfacing in acute scenarios with an affordable, portable and space-saving design for the laboratory. The stimulator can be further upgraded with additional modules to extend functionality while maintaining straightforward programming and integration of functions with one controller. Additionally, all source files including all code and PCB design files are freely available to the community to use and further develop.
Abstract-Functional electrical stimulation is a powerful tool for restoration of function after nerve injury. However selectivity of stimulation remains an issue. This paper presents an alternative stimulation technique to obtain fiber size-selective stimulation of nerves using FDA-approved electrode implants. The technique was simulated for the ventral roots of Xenopus Laevis, motivated by an application in bladder control. The technique relies on applying a high frequency alternating current to filter out action potentials in larger fibers, resulting in selective stimulation of the smaller fibers. Results predict that the technique can distinguish fibers with only a 2 µm difference in diameter (for nerves not exceeding 2 mm in diameter). The study investigates the behaviour of electrically blocked nerves in detail. Model imperfections and simplifications yielded some artefacts in the results, as well as unexpected nerve behaviour which is tentatively explained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.