The severe acute respiratory syndrome coronavirus (SARS-CoV) spike protein is known to mediate receptor interaction and immune recognition and thus it is considered as a major target for vaccine design. The spike protein plays an important role in virus entry, virus receptor interactions, and virus tropism. Sensitive diagnosis of SARS is essential for the control of the disease in humans. Recombinant SARS-CoV S1 antigen was produced and purified for the development of monoclonal and bi-specific monoclonal antibodies. The hybridomas secreting anti-S1 antibodies, F26G18 and P136.8D12, were fused respectively with the YP4 hybridoma to generate quadromas. The sandwich ELISA was formed by using F26G18 as a coating antibody and biotinylated F26G18 as a detection antibody with a detection limit of 0.037μg/ml (p<0.02). The same detection limit was found with P136.8D12 as a coating antibody and biotinylated F26G18 as a detection antibody. The sensitivity was improved (detection limit of 0.019μg/ml), however, when using bi-specific monoclonal antibody (F157) as the detection antibody. In conclusion, the method described in this study allows sensitive detection of a recombinant SARS spike protein by sandwich ELISA with bi-specific monoclonal antibody and could be used for the diagnosis of patients suspected with SARS.
Chondroitin sulphate (CS), a major glycosaminoglycan, is an essential component of the extracellular matrix in cartilaginous tissues. Wapiti velvet antlers are a rich source of these molecules. The purpose of the present study was to develop an effective isolation procedure of CS from fresh velvet antlers using a combination of high hydrostatic pressure (100 MPa) and enzymatic hydrolysis (papain). High CS extractability (95.1 ± 2.5%) of total uronic acid was obtained following incubation (4 h at 50 °C) with papain at pH 6.0 in 100 MPa compared to low extractability (19 ± 1.1%) in ambient pressure (0.1 MPa). Antler CS fractions were isolated by Sephacryl S-300 chromatography and identified by western blot using an anti-CS monoclonal antibody. The antler CS fraction did not aggregate with hyaluronic acid in CL-2B chromatography and possessed DPPH radical scavenging activity at 78.3 ± 1.5%. The results indicated that high hydrostatic pressure and enzymatic hydrolysis procedure may be a useful tool for the isolation of CS from antler cartilaginous tissues.
Ebola virus disease (EVD) is a major public health concern with a high mortality rate in infected individuals. Outbreaks of Ebola have been widespread-there is no rapid, sensitive, specific, and affordable diagnostic test for the virus, nor there is any treatment for the disease. Overlapping symptoms of other endemic diseases, such as malaria and cholera, make it difficult to diagnose EVD. For clinical management, outbreak investigation, and proper surveillance, EVD requires a detection system, which should be fast, sensitive, specific, efficient, affordable, and user-friendly with in-country staff. In this review, we discuss the current diagnostics available for Ebola screening, along with the limitations and key improvements necessary for a more robust system to facilitate efficient management in case of another major outbreak.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.