Microarchitectured materials achieve superior mechanical properties through geometry rather than composition. Although ultralightweight microarchitectured materials can have high stiffness and strength, application to durable devices will require sufficient service life under cyclic loading. Naturally occurring materials provide useful models for high-performance materials. Here, we show that in cancellous bone, a naturally occurring lightweight microarchitectured material, resistance to fatigue failure is sensitive to a microarchitectural trait that has negligible effects on stiffness and strength—the proportion of material oriented transverse to applied loads. Using models generated with additive manufacturing, we show that small increases in the thickness of elements oriented transverse to loading can increase fatigue life by 10 to 100 times, far exceeding what is expected from the associated change in density. Transversely oriented struts enhance resistance to fatigue by acting as sacrificial elements. We show that this mechanism is also present in synthetic microlattice structures, where fatigue life can be altered by 5 to 9 times with only negligible changes in density and stiffness. The effects of microstructure on fatigue life in cancellous bone and lattice structures are described empirically by normalizing stress in traditional stress vs. life (S-N) curves by √ψ, where ψ is the proportion of material oriented transverse to load. The mechanical performance of cancellous bone and microarchitectured materials is enhanced by aligning structural elements with expected loading; our findings demonstrate that this strategy comes at the cost of reduced fatigue life, with consequences to the use of microarchitectured materials in durable devices and to human health in the context of osteoporosis.
Mantis shrimp are aggressive marine crustaceans well known for their rapid and powerful hunting strategies. Less well known, however, is the ability of some species of mantis shrimp to defend themselves from the repeated blows of conspecifics during ritualized fighting using a shield-like segment of abdominal armor called the telson. Multiscale structure-mechanical property relationships of this damage-tolerant biological composite is examined in order to reveal strategies that nature uses for resisting failure from repeated high-energy impacts. The telson structures of the smashingtype species, Odontodactylus scyllarus, and the less aggressive spearing-type species, Lysiosquillina maculata, are compared in order to better understand the ecological pressures driving the formation and use of the telson as a biological shield. A higher bulk compressive stiffness is identified within the smasher telson, which is attributed to its concave macromorphology, thicker cuticle, and higher degree of mineralization within its exocuticle. The presence of ridges at the dorsal surface suggests a role in imparting compliance for energy absorption. Fracture analysis identifies an enhanced toughening mechanism of crack twisting within the smasher telson, attributed to its well-defined pitch-graded helicoidal fibrous micro-architecture. Such findings may prove useful for the design of lightweight composite materials with potential flexibility and improved damage tolerance.
The brain is one of the most important and complicated organs, but it is delicate and therefore needs to be protected from external forces. This makes the pecking behavior of the Woodpecker so impressive, as they are not known to sustain any brain injury due to their anatomical adaptations (a specialized beak, skull bone, and hyoid bone). However, the relationship between the morphology of the woodpecker head and its mechanical function against damage from daily pecking habits remain an open question. Aided by recent technical advancements, these questions can be explored by applying new materials science concepts of bioinspiration and This article is protected by copyright. All rights reserved.3 bioexploration to identify adapted structures/materials in a design that results from millions years of evolution. Two main features, including the beam-like bar structure of the jugal bone acting as a main stress deflector and the high natural frequency of the skull bone of woodpeckers can teach two lessons for potential materials development as well as engineering applications: protection of a delicate internal organ occurs by redirection of the main stress pathway and a large mismatch of the natural frequencies between the skull and brain avoids resonance and reduces the overall load experienced by the brain.
Beetles typically use their protective wing coverings or elytra to shield their membranous hindwings from the environment. Elytra in some terrestrial species have evolved a greater protective role capable of shielding the organism from powerful antagonistic predators. The structure-function relationships of these biological composites identify how architectural and chemical variations of the cuticle are tuned to create light-weight, impact resistant composites. Specifically, the elytral structures of a tree dwelling beetle capable of flight, Trypoxylus dichotomus, and a terrestrial beetle incapable of flight, Phloeodes diabolicus, are compared to understand how their varied environmental needs forged the elytra to facilitate fight or resist fatal predator strikes. Mechanical and microstructural analysis reveals P. diabolicus has a harder, stiffer elytra that incorporate through-thickness fibers to resist greater mechanical stresses imposed by bending and puncture. Conversely, the elytra of T. dichotomus have a compliant structure with large voids that facilitates localized deformation. Variations in flexural strength and puncture resistance remain attributed to P. diabolicus possessing a thicker cuticle with a greater degree of cross-linking and an increased amount of endocuticular layers. These findings may provide useful insight into the design and manufacturing of composite materials for use in light-weight or energy-absorbing applications.
In article number 1902238, David Kisailus and co‐workers identify multiscale structure‐mechanical property relationships within the shield‐like exoskeletal telson structure of the mantis shrimp, used for defense and protection. Comparison of telsons from two evolutionarily divergent species reveal differences in macromorphology, cuticle thickness, and mineralization, imparting compressive stiffness as well as compliance for energy absorption (Photo by Roy Caldwell; rendering by Jesus Rivera).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.