Autonomous robots are comprised of actuation, energy, sensory, and control systems built from materials and structures that are not necessarily designed and integrated for multifunctionality. Yet, humans and other animals that robots strive to emulate contain highly sophisticated and interconnected systems at the cellular, tissue, and organ levels, which allow multiple functions to be performed simultaneously. Here, we examine how nature builds to establish a new paradigm for autonomous robots with Embodied Energy. Currently, most untethered robots use batteries to store energy and power their operation. To extend their operating time, additional battery blocks must be added in tandem with supporting structures, increasing their weight and reducing their efficiency. Recent advancements in energy storage techniques enable chemical or electrical energy sources to be embodied directly within the materials and mechanical systems used to create robots. This perspective highlights emerging examples of Embodied Energy, focusing on the design and fabrication of enduring autonomous robots.
Whereas vision dominates sensing in robots, animals with limited vision deftly navigate their environment using other forms of perception, such as touch. Efforts have been made to apply artificial skins with tactile sensing to robots for similarly sophisticated mobile and manipulative skills. The ability to functionally mimic the afferent sensory neural network, required for distributed sensing and communication networks throughout the body, is still missing. This limitation is partially due to the lack of cointegration of the mechanosensors in the body of the robot. Here, lacings of stretchable optical fibers distributed throughout 3D-printed elastomer frameworks created a cointegrated body, sensing, and communication network. This soft, functional structure could localize deformation with submillimeter positional accuracy (error of 0.71 millimeter) and sub-Newton force resolution (~0.3 newton).
Microarchitectured materials achieve superior mechanical properties through geometry rather than composition. Although ultralightweight microarchitectured materials can have high stiffness and strength, application to durable devices will require sufficient service life under cyclic loading. Naturally occurring materials provide useful models for high-performance materials. Here, we show that in cancellous bone, a naturally occurring lightweight microarchitectured material, resistance to fatigue failure is sensitive to a microarchitectural trait that has negligible effects on stiffness and strength—the proportion of material oriented transverse to applied loads. Using models generated with additive manufacturing, we show that small increases in the thickness of elements oriented transverse to loading can increase fatigue life by 10 to 100 times, far exceeding what is expected from the associated change in density. Transversely oriented struts enhance resistance to fatigue by acting as sacrificial elements. We show that this mechanism is also present in synthetic microlattice structures, where fatigue life can be altered by 5 to 9 times with only negligible changes in density and stiffness. The effects of microstructure on fatigue life in cancellous bone and lattice structures are described empirically by normalizing stress in traditional stress vs. life (S-N) curves by √ψ, where ψ is the proportion of material oriented transverse to load. The mechanical performance of cancellous bone and microarchitectured materials is enhanced by aligning structural elements with expected loading; our findings demonstrate that this strategy comes at the cost of reduced fatigue life, with consequences to the use of microarchitectured materials in durable devices and to human health in the context of osteoporosis.
The force, speed, dexterity, and compact size required of prosthetic hands present extreme design challenges for engineers. Current prosthetics rely on high-quality motors to achieve adequate precision, force, and speed in a small enough form factor with the trade-off of high cost. We present a simple, compact, and cost-effective continuously variable transmission produced via projection stereolithography. Our transmission, which we call an elastomeric passive transmission (EPT), is a polyurethane composite cylinder that autonomously adjusts its radius based on the tension in a wire spooled around it. We integrated six of these EPTs into a three-dimensionally printed soft prosthetic hand with six active degrees of freedom. Our EPTs provided the prosthetic hand with about three times increase in grip force without compromising flexion speed. This increased performance leads to finger closing speeds of ~0.5 seconds (average radial velocity, ~180 degrees second−1) and maximum fingertip forces of ~32 newtons per finger.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.