Whole-exome sequencing was performed in a family affected by dominantly inherited inflammatory disease characterized by recurrent blistering skin lesions, bronchiolitis, arthralgia, ocular inflammation, enterocolitis, absence of autoantibodies, and mild immunodeficiency. Exome data from three samples, including the affected father and daughter and unaffected mother, were filtered for the exclusion of reported variants, along with benign variants, as determined by PolyPhen-2. A total of eight transcripts were identified as possible candidate genes. We confirmed a variant, c.2120C>A (p.Ser707Tyr), within PLCG2 as the only de novo variant that was present in two affected family members and not present in four unaffected members. PLCG2 encodes phospholipase Cγ2 (PLCγ2), an enzyme with a critical regulatory role in various immune and inflammatory pathways. The p.Ser707Tyr substitution is located in an autoinhibitory SH2 domain that is crucial for PLCγ2 activation. Overexpression of the altered p.Ser707Tyr protein and ex vivo experiments using affected individuals' leukocytes showed clearly enhanced PLCγ2 activity, suggesting increased intracellular signaling in the PLCγ2-mediated pathway. Recently, our laboratory identified in individuals with cold-induced urticaria and immune dysregulation PLCG2 exon-skipping mutations resulting in protein products with constitutive phospholipase activity but with reduced intracellular signaling at physiological temperatures. In contrast, the p.Ser707Tyr substitution in PLCγ2 causes a distinct inflammatory phenotype that is not provoked by cold temperatures and that has different end-organ involvement and increased intracellular signaling at physiological temperatures. Our results highlight the utility of exome-sequencing technology in finding causal mutations in nuclear families with dominantly inherited traits otherwise intractable by linkage analysis.
Objective Chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature (CANDLE) syndrome is an autoinflammatory syndrome recently described in children. We investigated the clinical phenotype, genetic cause and the immune dysregulation in nine CANDLE patients. Methods Genomic DNA from all patients was screened for PSMB8 (Proteasome subunit beta type-8) mutations. Serum cytokine levels were measured from four patients. Skin biopsies were evaluated immunohistochemically and blood microarray profile (n=4) and stat-1 phosphorylation (n=3) were assessed. Results One patient was homozygous for a novel nonsense mutation in PSMB8 (c.405C>A) suggesting a protein truncation, four patients were homozygous and two were heterozygous for a previously reported missense mutation (c.224C>T), and one patient showed no mutation. None of these sequence changes was observed in chromosomes from 750 healthy controls. Of the four patients with the same mutation, only two share the same haplotype indicating a mutational hot spot. PSMB8 mutation-positive and -negative patients expressed high IP-10 (Interferon gamma-induced protein 10) levels. Levels of MCP-1, IL-6, and IL-1Ra were moderately elevated. Microarray profiles and monocyte stat-1 activation suggested a unique interferon (IFN) signaling signature, unlike in other autoinflammatory disorders. Conclusion CANDLE is caused by mutations in PSMB8, a gene recently reported to cause JMP syndrome (joint contractures, muscle atrophy and panniculitis induced lipodystrophy) in adults. We extend the clinical and pathogenic description of this novel autoinflammatory syndrome, thereby expanding the clinical and genetic disease spectrum of PSMB8-associated disorders. IFN may be a key mediator of the inflammatory response and may present a therapeutic target.
Lung CFUs also were reduced to the same extent in vaccinated Il18r-/and wild-type mice (Supplemental Figure 7B). In contrast, IL-17-producing T cells recruited to the lungs of IL1r-/mice were reduced, and the mice failed to acquire resistance in comparison with vaccinated wild-type controls. Thus, IL-18R, but not IL-1R, is dispensable in the development of T17 cells and vaccine resistance. Moreover, failed T17 differentiation of 1807 cells in Myd88-/mice is not due to impaired IL-18R signaling, but is likely due to impaired signaling via TLRs and IL-1R. Discussion The fact that adoptively transferred wild-type 1807 cells failed to recruit to the lung in Myd88-/mice and showed a deficit in IL1r-/-, but not Il18r-/-, mice indicates that the deficits in Myd88-/mice are not due to impaired IL-18R signaling, but are likely due to impaired signaling via TLRs and IL-1R.
The novel human gene family encoding neuronal leucine rich repeat (NLRR) proteins were identified as prognostic markers from our previous screening of primary neuroblastoma (NB) cDNA libraries. Of the NLRR gene family members, NLRR1 and NLRR3 are associated with the regulation of cellular proliferation and differentiation, respectively. However, the functional regulation and clinical significance of NLRR2 in NB remain unclear. Here, we evaluated the differential expression of NLRR2, where high expressions of NLRR2 were significantly associated with a poor prognosis of NB (P = 0.0009), in 78 NBs. Enforced expression of NLRR2 in NB cells enhanced cellular proliferation and induced resistance to retinoic acid (RA)‐mediated cell growth inhibition. In contrast, knockdown of NLRR2 exhibited growth inhibition effects and enhanced RA‐induced cell differentiation in NB cells. After RA treatment, NLRR2 expression was increased and correlated with the upregulation of c‐Jun, a member of the activator protein‐1 (AP‐1) family in NB cells. Moreover, the expressions of NLRR2 and c‐Jun were suppressed by treatment with a JNK inhibitor, which ameliorated the promoter activity of the NLRR2 gene while knockdown of c‐Jun reduced NLRR2 expression. We then searched AP‐1 binding consensus in the NLRR2 promoter region and confirmed c‐Jun recruitment at a consensus. Conclusively, NLRR2 must be an inducible gene regulated by the JNK pathway to enhance cell survival and inhibit NB cell differentiation. Therefore, NLRR2 should have an important role in NB aggressiveness and be a potential therapeutic target for the treatment of RA resistant and aggressive NB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.