Theta rhythms have been recorded from rat brain slices of the posterior hypothalamic area (PHa), including the supramammillary and posterior hypothalamic nuclei. Additionally, in numerous studies theta-related neurons were identified in the PHa according to the classification of Bland and Colom (Progress in Neurobiology, 41, 157-208, 1993). It is currently widely accepted that the PHa contributes to the process of HPC theta frequency programming at least in certain behavioral states. The postnatal development of the HPC and its ability to generate theta has also been a subject of studies. Specifically, it was found that theta oscillations are present in the HPC of 8-10 days old rat pups and turn into a well-synchronized and high-amplitude activity in the following few days. In our current study, we therefore focused on the postnatal development of cholinergically-induced theta rhythm and theta-related neuronal activity in PHa slices obtained from 8 to 24 days old rat pups. Theta activity was observed in the PHa preparations at the age of 8-10 days and then progressively increased its probability of occurrence, amplitude and synchrony up to the age of 22-24 days when it reached a plateau phase. A steady increase in the number of recorded neurons correlated with local theta oscillations was also observed.
The posterior hypothalamic area (PHa), including the supramammillary nucleus (SuM) and posterior hypothalamic nuclei, forms a crucial part of the ascending brainstem hippocampal synchronizing pathway, that is involved in the frequency programming and modulation of rhythmic theta activity generated in limbic structures. Recent investigations show that in addition to being a modulator of limbic theta activity, the PHa is capable of producing well‐synchronized local theta field potentials by itself. The purpose of this study was to examine the ability of the PHa to generate theta field potentials and accompanying cell discharges in response to glutamatergic stimulation under both in vitro and in vivo conditions. The second objective was to examine the electrophysiological properties of neurons located in the SuM and posterior hypothalamic nuclei. Extracellular in vivo and in vitro as well as intracellular in vitro experiments revealed that glutamatergic stimulation of PHa with kainic acid induces well‐synchronized local theta field oscillations in both the supramammillary and posterior hypothalamic nuclei. Furthermore, the glutamatergic PHa theta rhythm recorded extracellularly was accompanied by the activity of specific subtypes of theta‐related neurons. We identify, for the first time, a subpopulation of supramammillary and posterior hypothalamic neurons that express clear subthreshold membrane potential oscillations in the theta frequency range.
Theta rhythm is one of the best synchronized patterns of the oscillatory activity recorded in
the mammalian brain. In humans, this rhythm is associated with REM sleep, spatial navigation,
memory functions, analytical and language processes. On the other hand, it can be treated as
a non-specific marker of such pathological states of the central nervous system as Alzheimer’s
disease or epilepsy. The hippocampal formation is the key structure involved in the generation
of this bioelectric phenomenon, both in humans and rodents (the most commonly studied laboratory
animals). Theta rhythm appearance in the hippocampus is dependent on the interaction
of multiple different structures of the nervous system. One of them is the posterior hypothalamic
area (PHa), which constitutes a crucial part of the neuronal system modulating the ability
of the hippocampal formation to generate theta rhythm. Although the research results encompassed
in this paper emphasize the essential role of the PHa as a modulator of the hippocampal
theta rhythm, it was the authors’ intent to indicate that this area is also capable of generating
local rhythmical theta oscillations, independently of the influence of other brain structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.