Infection with avirulent pathogens, tobacco mosaic virus (TMV) or Pseudomonas syringae pv. tabaci induced accumulation of polyisoprenoid alcohols, solanesol and a family of polyprenols [from polyprenol composed of 14 isoprene units (Pren-14) to -18, with Pren-16 dominating] in the leaves of resistant tobacco plants Nicotiana tabacum cv. Samsun NN. Upon TMV infection, solanesol content was increased seven- and eight-fold in the inoculated and upper leaves, respectively, while polyprenol content was increased 2.5- and 2-fold in the inoculated and upper leaves, respectively, on the seventh day post-infection. Accumulation of polyisoprenoid alcohols was also stimulated by exogenously applied hydrogen peroxide but not by exogenous salicylic acid (SA). On the contrary, neither inoculation of the leaves of susceptible tobacco plants nor wounding of tobacco leaves caused an increase in polyisoprenoid content. Taken together, these results indicate that polyisoprenoid alcohols might be involved in plant resistance against pathogens. A putative role of accumulated polyisoprenoids in plant response to pathogen attack is discussed. Similarly, the content of plastoquinone (PQ) was increased two-fold in TMV-inoculated and upper leaves of resistant plants. Accumulation of PQ was also stimulated by hydrogen peroxide, bacteria (P. syringae) and SA. The role of PQ in antioxidant defense in cellular membranous compartments is discussed in the context of the enzymatic antioxidant machinery activated in tobacco leaves subjected to viral infection. Elevated activity of several antioxidant enzymes (ascorbate peroxidase, guaiacol peroxidase, glutathione reductase and superoxide dismutase, especially the CuZn superoxide dismutase isoform) and high, but transient elevation of catalase was found in inoculated leaves of resistant tobacco plants but not in susceptible plants.
Plant isoprenoids are derived from two biosynthetic pathways, the cytoplasmic mevalonate (MVA) and the plastidial methylerythritol phosphate (MEP) pathway. In this study their respective contributions toward formation of dolichols in Coluria geoides hairy root culture were estimated using in vivo labeling with 13 C-labeled glucose as a general precursor. NMR and mass spectrometry showed that both the MVA and MEP pathways were the sources of isopentenyl diphosphate incorporated into polyisoprenoid chains. The involvement of the MEP pathway was found to be substantial at the initiation stage of dolichol chain synthesis, but it was virtually nil at the terminal steps; statistically, 6 -8 isoprene units within the dolichol molecule (i.e. 40 -50% of the total) were derived from the MEP pathway. These results were further verified by incorporation of Polyisoprenoid alcohols together with sterols and quinone side chains constitute three main branches of terpene products originating from farnesyl diphosphate (FPP) 4 (1). These linear five-carbon unit polymers are divided into two groups, i.e. polyprenols and dolichols, according to the hydrogenation status of the ␣-terminal isoprene unit (dolichol structure is shown in Fig. 1). In cells, polyprenols and dolichols are always found as mixtures of prenologues, and data collected so far show polyprenols to be typical for bacteria and plants, whereas dolichols are generally attributed to animals and yeast (2). Nevertheless, it should be remembered that dolichols are the predominant form in some plant organs like roots (3). Data on the occurrence and functions of polyisoprenoids are summarized in recently published reviews (4, 5). The formation of the polyisoprenoid chain, starting from the -end of the molecule (Fig. 1), proceeds in a biphasic manner with farnesyl-diphosphate synthase responsible for the synthesis of the all-trans-FPP (three isoprene units of -t 2 structure, t stands for trans-isoprene unit), and its further elongation by cis-prenyltransferase. The latter enzyme, cloned from several prokaryotic and eukaryotic organisms (see Refs. 6, 7 and references therein), including Arabidopsis thaliana (8,9) and Hevea brasiliensis (10), utilizes isopentenyl diphosphate (IPP) for elongation of FPP up to the desired chain length, thus producing a family of polyprenyl diphosphates (n isoprene units of -t 2 -c n-3 structure, c stands for cis-isoprene unit), which are subsequently converted to polyprenols or dolichols according to the "tissue-specific requirements" by a still unknown mechanism.In plant cells two pathways are known to produce IPP utilized by numerous enzymes to finally give more than 50,000 different isoprenoid structures, the mevalonate pathway (MVA) and the mevalonate-independent methylerythritol phosphate pathway (MEP) (for reviews, see Refs. 11-13). Both pathways are compartmentalized as follows: the MVA in the cytoplasm to provide sterols, the many sesquiterpenes, and the prenyl chains of ubiquinones, and the MEP one in the plastids Tables 1 and 2
In many plants belonging to angiosperms and gymnosperms the accumulation in leaves of long chain polyprenols and polyprenyl esters during growth in natural habitats depends on the light intensity. The amount of polyprenols in leaves is also positively correlated with the thickness of the leaf blade (SLA, specific leaf area). The polyprenol content of leaves shows seasonal changes with a maximum in autumn and a minimum in early summer with the difference between poorly and well illuminated plants persisting throughout the vegetation season.Following the discovery in the 1960-ies and 70-ies of polyprenol accumulation in leaves of Ficus elastica (Stone et al., 1967) and in several other plant species (Swiezewska et al., 1994), studies on the accumulation of long chain polyprenols in leaves of various species of angiosperms and gymnosperms have been focused on taxon-dependent differences in the content and the type of the polyprenol mixture. The results of the screening of several hundred plant species performed mainly by the "Collection of Polyprenols" group at the Institute of Biochemistry and Biophysics in Warsaw have demontrated that in about Vol. 52 No. 1/2005 233-241 QUARTERLY .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.