Infection with avirulent pathogens, tobacco mosaic virus (TMV) or Pseudomonas syringae pv. tabaci induced accumulation of polyisoprenoid alcohols, solanesol and a family of polyprenols [from polyprenol composed of 14 isoprene units (Pren-14) to -18, with Pren-16 dominating] in the leaves of resistant tobacco plants Nicotiana tabacum cv. Samsun NN. Upon TMV infection, solanesol content was increased seven- and eight-fold in the inoculated and upper leaves, respectively, while polyprenol content was increased 2.5- and 2-fold in the inoculated and upper leaves, respectively, on the seventh day post-infection. Accumulation of polyisoprenoid alcohols was also stimulated by exogenously applied hydrogen peroxide but not by exogenous salicylic acid (SA). On the contrary, neither inoculation of the leaves of susceptible tobacco plants nor wounding of tobacco leaves caused an increase in polyisoprenoid content. Taken together, these results indicate that polyisoprenoid alcohols might be involved in plant resistance against pathogens. A putative role of accumulated polyisoprenoids in plant response to pathogen attack is discussed. Similarly, the content of plastoquinone (PQ) was increased two-fold in TMV-inoculated and upper leaves of resistant plants. Accumulation of PQ was also stimulated by hydrogen peroxide, bacteria (P. syringae) and SA. The role of PQ in antioxidant defense in cellular membranous compartments is discussed in the context of the enzymatic antioxidant machinery activated in tobacco leaves subjected to viral infection. Elevated activity of several antioxidant enzymes (ascorbate peroxidase, guaiacol peroxidase, glutathione reductase and superoxide dismutase, especially the CuZn superoxide dismutase isoform) and high, but transient elevation of catalase was found in inoculated leaves of resistant tobacco plants but not in susceptible plants.
Translocase I (MraY/MurX) is an essential enzyme in growth of the vast majority of bacteria that catalyzes the transformation from UDP-MurNAc-pentapeptide (Park’s nucleotide) to prenyl-MurNAc-pentapeptide (lipid I), the first membrane-anchored peptidoglycan precursor. MurX has been received considerable attentions to the development of new TB drugs due to the fact that the MurX inhibitors kill exponentially growing Mycobacterium tuberculosis (Mtb) much faster than clinically used TB drugs. Lipid I isolated from Mtb contains the C50-prenyl unit that shows very poor water-solubility, and thus, this chemical characteristic of lipid I renders MurX enzyme assays impractical for screening and lacks reproducibility of the enzyme assays. We have established a scalable chemical synthesis of Park’s nucleotide-Nε-dansylthiourea 2 that can be used as a MurX enzymatic substrate to form lipid I analogues. In our investigation of minimum structure requirement of the prenyl phosphate in the MraY/MurX-catalyzed lipid I analogue synthesis with 2, we found that neryl phosphate (C10-phosphate) can be recognized by MraY/MurX to generate the water-soluble lipid I analogue in quantitative yield under the optimized conditions. Herein, we report a rapid and robust analytical method for quantifying MraY/MurX inhibitory activity of library molecules.
Plant isoprenoids are derived from two biosynthetic pathways, the cytoplasmic mevalonate (MVA) and the plastidial methylerythritol phosphate (MEP) pathway. In this study their respective contributions toward formation of dolichols in Coluria geoides hairy root culture were estimated using in vivo labeling with 13 C-labeled glucose as a general precursor. NMR and mass spectrometry showed that both the MVA and MEP pathways were the sources of isopentenyl diphosphate incorporated into polyisoprenoid chains. The involvement of the MEP pathway was found to be substantial at the initiation stage of dolichol chain synthesis, but it was virtually nil at the terminal steps; statistically, 6 -8 isoprene units within the dolichol molecule (i.e. 40 -50% of the total) were derived from the MEP pathway. These results were further verified by incorporation of Polyisoprenoid alcohols together with sterols and quinone side chains constitute three main branches of terpene products originating from farnesyl diphosphate (FPP) 4 (1). These linear five-carbon unit polymers are divided into two groups, i.e. polyprenols and dolichols, according to the hydrogenation status of the ␣-terminal isoprene unit (dolichol structure is shown in Fig. 1). In cells, polyprenols and dolichols are always found as mixtures of prenologues, and data collected so far show polyprenols to be typical for bacteria and plants, whereas dolichols are generally attributed to animals and yeast (2). Nevertheless, it should be remembered that dolichols are the predominant form in some plant organs like roots (3). Data on the occurrence and functions of polyisoprenoids are summarized in recently published reviews (4, 5). The formation of the polyisoprenoid chain, starting from the -end of the molecule (Fig. 1), proceeds in a biphasic manner with farnesyl-diphosphate synthase responsible for the synthesis of the all-trans-FPP (three isoprene units of -t 2 structure, t stands for trans-isoprene unit), and its further elongation by cis-prenyltransferase. The latter enzyme, cloned from several prokaryotic and eukaryotic organisms (see Refs. 6, 7 and references therein), including Arabidopsis thaliana (8,9) and Hevea brasiliensis (10), utilizes isopentenyl diphosphate (IPP) for elongation of FPP up to the desired chain length, thus producing a family of polyprenyl diphosphates (n isoprene units of -t 2 -c n-3 structure, c stands for cis-isoprene unit), which are subsequently converted to polyprenols or dolichols according to the "tissue-specific requirements" by a still unknown mechanism.In plant cells two pathways are known to produce IPP utilized by numerous enzymes to finally give more than 50,000 different isoprenoid structures, the mevalonate pathway (MVA) and the mevalonate-independent methylerythritol phosphate pathway (MEP) (for reviews, see Refs. 11-13). Both pathways are compartmentalized as follows: the MVA in the cytoplasm to provide sterols, the many sesquiterpenes, and the prenyl chains of ubiquinones, and the MEP one in the plastids Tables 1 and 2
Polyisoprenoid alcohols of the plant Coluria geoides were isolated and analyzed by HPLC with UV detection to determine the nature of the polyprenol and dolichol mixture in the organs studied. In roots, a family of dolichols (Dol-15 to Dol-23, with Dol-16 dominating, where Dol-n is dolichol composed of n isoprene units) was accompanied by traces of polyprenols of similar chain lengths, whereas in hairy roots grown in vitro, identical patterns with a slightly broader chain-length range were found. Conversely, in leaves and seeds polyprenols were the dominant form, and their pattern was shifted toward longer chains (maximal content of Pren-19, where Pren-n is polyprenol composed of n isoprene units). Interestingly, the pattern of dolichols in seeds and leaves (in which Dol-17 dominated) was similar to that found in roots. Structures of the dolichols and polyprenols isolated were confirmed by the application of a new HPLC/electrospray ionization-MS method, which also offers a much higher sensitivity in detection of these compounds compared to a UV detector. The highest sensitivity was obtained when the [M + Na]+ ions of polyprenols and dolichols were recorded in the selected ion monitoring mode and a small amount of sodium acetate solution was added post-column to enhance the formation of these ions in an electrospray ion source.
Polyprenyl phosphate-GlcNAc-1-phosphate transferase (WecA) is an essential enzyme for the growth of Mycobacterium tuberculosis (Mtb) and some other bacteria. Mtb WecA catalyzes the transformation from UDP-GlcNAc to decaprenyl-P-P-GlcNAc, the first membrane-anchored glycophospholipid that is responsible for the biosynthesis of mycolylarabinogalactan in Mtb. Inhibition of WecA will block the entire biosynthesis of essential cell wall components of Mtb in both replicating and non-replicating states, making this enzyme a target for development of novel drugs. Here, we report a fluorescence-based method for the assay of WecA using a modified UDP-GlcNAc, UDP-Glucosamine-C6-FITC (1), a membrane fraction prepared from an M. smegmatis strain, and the E. coli B21WecA. Under the optimized conditions, UDP-Glucosamine-C6-FITC (1) can be converted to the corresponding decaprenyl-P-P-Glucosamine-C6-FITC (3) in 61.5% yield. Decaprenyl-P-P-Glucosamine-C6-FITC is readily extracted with n-butanol and can be quantified by ultraviolet-visible (UV-Vis) spectrometry. Screening of the compound libraries designed for bacterial phosphotransferases resulted in the discovery of a selective WecA inhibitor, UT-01320 (12) that kills both replicating and non-replicating Mtb at low concentration. UT-01320 (12) also kills the intracellular Mtb in macrophages. We conclude that the WecA assay reported here is amenable to medium- and high-throughput screening, thus facilitating the discovery of novel WecA inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.