There has been an increased interest in mesenchymal stem cells from adipose tissue, due to their abundance and accessibility with no ethical concerns. Their multipotent properties make them appropriate for regenerative clinical applications. It has been shown that adipose-derived stem cells (ASCs) may differ between the origin sites. Moreover, a variety of internal and external factors may affect their biological characteristics, as what we aimed to highlight in this review. It has been demonstrated that ASCs secrete multiple trophic factors that are capable of stimulating cell proliferation and differentiation and migration of various cell types. Particular attention should be given to exosomes, since it is known that they contribute to the paracrine effects of MSCs. Secretion of trophic agents by ASCs is thought to be in a greater importance for regenerative medicine applications, rather than cells engraftment to the site of injury and their differentiation ability. The surface marker profile of ASCs seems to be similar to that of the mesenchymal stem cells from bone marrow, although some molecular differences are observed. Thus, in this review, we have attempted to define trophic activity, as well as phenotypic characterization of ASCs, as crucial factors for therapeutic usage.
Adipose-derived stem cells (ASCs) secrete many cytokines, proteins, growth factors, and extracellular vesicles with beneficial outcomes that can be used in regenerative medicine. It has great potential, and the development of new treatment strategies using the ASCs secretome is of global interest. Besides cytokines, proteins, and growth factors, the therapeutic effect of secretome is hidden in non-coding RNAs such as miR-21, miR-24, and miR-26 carried via exosomes secreted by adequate cells. The whole secretome, including ASC-derived exosomes (ASC-exos) has been proven in many studies to have immunomodulatory, proangiogenic, neurotrophic, and epithelization activity and can potentially be used for neurodegenerative, cardiovascular, respiratory, inflammatory, and autoimmune diseases as well as wound healing treatment. Due to limitations in the use of stem cells in cell-based therapy, its secretome with emphasis on exosomes seems to be a reasonable and safer alternative with increased effectiveness and fewer side effects. Moreover, the great advantage of cell-free therapy is the possibility of biobanking the ASCs secretome. In this review, we focus on the current state of knowledge on the use of the ASCs secretome in stem cell-free therapy.
The appearance of the SARS-CoV-2 virus initiated many studies on the effects of the virus on the human body. So far, its negative influence on the functioning of many morphological and physiological units, including the nervous system, has been demonstrated. Consequently, research has been conducted on the changes that SARS-CoV-2 may cause in the cholinergic system. The aim of this study is to review the latest research from the years 2020/2021 regarding disorders in the cholinergic system caused by the SARS-CoV-2 virus. As a result of the research, it was found that the presence of the COVID-19 virus disrupts the activity of the cholinergic system, for example, causing the development of myasthenia gravis or a change in acetylcholine activity. The SARS-CoV-2 spike protein has a sequence similar to neurotoxins, capable of binding nicotinic acetylcholine receptors (nAChR). This may be proof that SARS-CoV-2 can bind nAChR. Nicotine and caffeine have similar structures to antiviral drugs, capable of binding angiotensin-converting enzyme 2 (ACE 2) epitopes that are recognized by SARS-CoV-2, with the potential to inhibit the formation of the ACE 2/SARS-CoV-2 complex. The blocking is enhanced when nicotine and caffeine are used together with antiviral drugs. This is proof that nAChR agonists can be used along with antiviral drugs in COVID-19 therapy. As a result, it is possible to develop COVID-19 therapies that use these compounds to reduce cytokine production. Another promising therapy is non-invasive stimulation of the vagus nerve, which soothes the body’s cytokine storm. Research on the influence of COVID-19 on the cholinergic system is an area that should continue to be developed as there is a need for further research. It can be firmly stated that COVID-19 causes a dysregulation of the cholinergic system, which leads to a need for further research, because there are many promising therapies that will prevent the SARS-CoV-2 virus from binding to the nicotinic receptor. There is a need for further research, both in vitro and in vivo. It should be noted that in the functioning of the cholinergic system and its connection with the activity of the COVID-19 virus, there might be many promising dependencies and solutions.
Previous research and clinical reports have shown that some individuals after COVID-19 infection may demonstrate symptoms of so-called brain fog, manifested by cognitive impairment and disorganization in behavior. Meanwhile, in several other conditions, related to intellectual function, a specific pattern of changes in electric brain activity, as recorded by quantitative electroencephalography (QEEG) has been documented. We hypothesized, that in post-COVID brain fog, the subjective complaints may be accompanied by objective changes in the QEEG profile. In order to test this hypothesis, we have performed an exploratory study on the academic staff of our University with previous records of QEEG originating in the pre-COVID-19 era. Among them, 20 subjects who revealed neurological problems in the cognitive sphere (confirmed as covid fog/brain fog by a clinical specialist) after COVID-19 infection were identified. In those individuals, QEEG was performed. We observed, that opposite to baseline QEEG records, increased Theta and Alpha activity, as well as more intensive sensimotor rhythm (SMR) in C4 (right hemisphere) in relation to C3 (left hemisphere). Moreover, a visible increase in Beta 2 in relation to SMR in both hemispheres could be documented. Summarizing, we could demonstrate a clear change in QEEG activity patterns in individuals previously not affected by COVID-19 and now suffering from post-COVID-19 brain fog. These preliminary results warrant further interest in delineating their background. Here, both neuroinflammation and psychological stress, related to Sars-CoV2-infection may be considered. Based on our observation, the relevance of QEEG examination as a supportive tool for post-COVID clinical workup and for monitoring the treatment effects is also to be explored.
Acrylamide (ACR) is a chemical compound that exhibits neurotoxic and genotoxic effects. It causes neurological symptoms such as tremors, general weakness, numbness, tingling in the limbs or ataxia. Numerous scientific studies show the effect of ACR on nerve endings and its close connection with the cholinergic system. The cholinergic system is part of the autonomic nervous system that regulates higher cortical functions related to memory, learning, concentration and attention. Within the cholinergic system, there are cholinergic neurons, anatomical cholinergic structures, the neurotransmitter acetylcholine (ACh) and cholinergic receptors. Some scientific reports suggest a negative effect of ACR on the cholinergic system and inflammatory reactions within the body. The aim of the study was to review the current state of knowledge on the influence of acrylamide on the cholinergic system and to evaluate its possible effect on inflammatory processes. The cholinergic anti-inflammatory pathway (CAP) is a neuroimmunomodulatory pathway that is located in the blood and mucous membranes. The role of CAP is to stop the inflammatory response in the appropriate moment. It prevents the synthesis and the release of pro-inflammatory cytokines and ultimately regulates the local and systemic immune response. The cellular molecular mechanism for inhibiting cytokine synthesis is attributed to acetylcholine (ACh), the major vagal neurotransmitter, and the α7 nicotinic receptor (α7nAChR) subunit is a key receptor for the cholinergic anti-inflammatory pathway. The combination of ACh with α7nAChR results in inhibition of the synthesis and release of pro-inflammatory cytokines. The blood AChE is able to terminate the stimulation of the cholinergic anti-inflammatory pathway due to splitting ACh. Accordingly, cytokine production is essential for pathogen protection and tissue repair, but over-release of cytokines can lead to systemic inflammation, organ failure, and death. Inflammatory responses are precisely regulated to effectively protect against harmful stimuli. The central nervous system dynamically interacts with the immune system, modulating inflammation through the humoral and nervous pathways. The stress-induced rise in acetylcholine (ACh) level acts to ease the inflammatory response and restore homeostasis. This signaling process ends when ACh is hydrolyzed by acetylcholinesterase (AChE). There are many scientific reports indicating the harmful effects of ACR on AChE. Most of them indicate that ACR reduces the concentration and activity of AChE. Due to the neurotoxic effect of acrylamide, which is related to the disturbance of the secretion of neurotransmitters, and its influence on the disturbance of acetylcholinesterase activity, it can be concluded that it disturbs the normal inflammatory response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.