Adipose-derived stem cells (ASCs) secrete many cytokines, proteins, growth factors, and extracellular vesicles with beneficial outcomes that can be used in regenerative medicine. It has great potential, and the development of new treatment strategies using the ASCs secretome is of global interest. Besides cytokines, proteins, and growth factors, the therapeutic effect of secretome is hidden in non-coding RNAs such as miR-21, miR-24, and miR-26 carried via exosomes secreted by adequate cells. The whole secretome, including ASC-derived exosomes (ASC-exos) has been proven in many studies to have immunomodulatory, proangiogenic, neurotrophic, and epithelization activity and can potentially be used for neurodegenerative, cardiovascular, respiratory, inflammatory, and autoimmune diseases as well as wound healing treatment. Due to limitations in the use of stem cells in cell-based therapy, its secretome with emphasis on exosomes seems to be a reasonable and safer alternative with increased effectiveness and fewer side effects. Moreover, the great advantage of cell-free therapy is the possibility of biobanking the ASCs secretome. In this review, we focus on the current state of knowledge on the use of the ASCs secretome in stem cell-free therapy.
Adipose-derived stem/stromal cells (ASCs) have tremendous potential for use in regenerative medicine; their secretome is especially important for regenerative processes. We hypothesized that exposure of ASCs to an electromagnetic field (EMF) can influence the proregenerative potential of cells by influencing the secretion of growth factors (GFs) responsible for regenerative properties. We showed that the exposure of ASCs to an EMF (50 Hz; 1.5mT) affected the secretion of GFs as well as the cell cycle process. The most important observation was a statistically significant, 3-fold increase in FGF-2 concentration at 48 h, and a 2-fold decrease at 72 h when compared to the control group. This finding is very important for regenerative medicine, because with precisely adjusted parameters, an EMF can be used to stimulate the production of GFs, mainly of FGF-2, by ASCs, thereby increasing proregenerative properties. The ASC secretome after EMF treatment could be a method for easy, simple and costeffective stem cell differentiation and therapy facilitation.
Introduction. Structural glycans have great biological significance and are involved in signaling and cell communication of the immune system. They are attached to proteins and lipids in an enzymatic process called glycosylation where glycosyltransferase and glycosidases bind sugar residues and lead to the formation of bioconjugates. Aim. In this paper we describe the importance of glycosylation in the immune system and its changes in diseases. Material and methods. This review was performed according to systematic literature search of major bibliographic databases. Results. Proper glycosylation ensures the functioning of the organism, however, defects in structural glycans of immune system changes their properties and can lead to disorders and further to autoimmune diseases. It has been also proven that glycosylation of autoimmune system is changed during cancer. In this paper we described types of structural glycans, significance of glycosylation of selected components of the immune system and its modifications in disorders. Conclusions. Knowledge about changes in the glycosylation in diseases is the key to understanding the processes of autoimmune diseases and may allow the development of new treatments in the future.
Context The electromagnetic field (EMF) is one of the external biophysical factors that can influence stem cells' structure and functionality. Depending on its frequency and magnetic flux density, EMF can have both a positive and negative effect on stem cell biology. Aims: The aim of the study is to define EMF conditions that support beneficial physiological processes and those that lead to pathophysiological phenomena. Understanding the changes and processes occurring in stem cells after exposure to EMFs of different parameters can be an important factor to be applied in stem cell-based therapies and regenerative medicine. Materials and Methods: In this study, using fluorescent microscopy and flow cytometry methods, the influence of EMF on adipose-derived stem cells proliferation, cell cycle, viability, and death were examined. EMF parameters were set in accordance with the ion cyclotron resonance (ICR) theory that influences Ca2+ and Mg2+ ions influx. Results were statistically developed using the ANOVA and effect size (Cohen's d) analyses. Results In this study, the continuous exposure of adipose-derived stem cells to EMF (ICR parameters: 76.6 Hz; 20 μT) causes a statistically significant increase in cell death through the enhancement of apoptotic, necrotic, and autophagic cell numbers. Apart from increased cell deaths after EMF exposure, increased proliferation after 24 h of EMF exposure has been also observed. Conclusions Results presented in this study show that EMF influences stem cell dynamics resulting in a significantly increased cell death, thus altering the stem cell fate. It is important to further establish EMF conditions that support ASCs functioning and beneficial physiological processes for future regenerative medical purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.