Aconitum lasiocarpum (Carpathian endemic) and A. variegatum (European endemic) occur sympatrically in the Polish Western Carpathians. Here their taxonomic hybrid A. ×pawlowskii occurs. The aim of this study was to determine the relationship between the taxonomic (Linnaean approach) and genetic structure (PCR-ISSR analysis) of the populations and individuals in two allopatric and four sympatric populations. We determined 309 individuals (OTUs) to species, subspecies and nothospecies using the Linnaean system of classification, and then genetically fingerprinted 39 randomly chosen OTUs. Comparison of the Nei and Li distances obtained from ISSR and morphological matrices using the Mantel test indicated a significant correlation (n = 39, r = 0.53, P = 0.001). Genetic analysis (NEWHYBRIDS) pointed to 7 OTUs as being later-generation hybrids (B1 introgessants) in the sympatric area. Five of them belong to A. variegatum, indicating cryptic introgression, and two belong to A. ×pawlowskii. Nonmetric multidimensional scaling (NDMS) showed gene flow between A. lasiocarpum and A. ×pawlowskii. Allopatric, morphologically pure A. lasiocarpum and A. variegatum populations differed significantly in their ISSR profiles (Fischer's R×C test, P < 0.0001). Expected heterozygosity (Hj) was significantly (p=0.05) lower in allopatric (0.1261-0.1268) than in sympatric populations (0.1348-0.1509), indicating a genetic melting pot in sympatry. The results support the existence of a natural interspecific hybrid swarm zone in the sympatric area of occurrence of Aconitum, and the taxonomic circumscription of the nothospecies within the Linnaean taxonomic system. K Ke ey y w wo or rd ds s: : Beskid Niski Mts., cryptic introgression, genetic melting pot, geographical range limit, hybridization, nothotaxa, postglacial migrations.
Obtaining oat DH lines is only effective via wide crossing with maize. Seven hundred haploid embryos from 21 single F1 progeny obtained from wide crosses with maize were isolated, divided into four groups according to their size (<0.5 mm, 0.5–0.9 mm, 1.0–1.4 mm, and ≥1.5 mm), and transferred into 190–2 regeneration medium with different growth regulators: 0.5 mg L−1 kinetin (KIN) and 0.5 mg L−1 1-naphthaleneacetic acid (NAA); 1 mg L−1 zeatin (ZEA) and 0.5 mg L−1 NAA; or 1 mg L−1 dicamba (DIC), 1 mg L−1 picloram (PIC), and 0.5 mg L−1 kinetin (KIN). Among all isolated embryos, approximately 46.1% were between 1.0–1.4 mm, while the smallest group of embryos (7.1%) were those <0.5 mm. The ability of haploid embryos to germinate varied depending on oat genotypes and the size of embryos. Haploid embryos <0.5 mm were globular and did not germinate, whereas embryos ≥1.5 mm had clearly visible coleoptiles, radicles, and scutella, and were able to germinate. Germination of oat haploid embryos varied depending on growth regulators in the regeneration medium. Most haploid embryos germinated on medium with 0.5 mg L−1 NAA and 0.5 mg L−1 KIN, while the fewest germinated on medium with 1 mg L−1 DIC, 1 mg L−1 PIC, and 0.5 mg L−1 KIN. One hundred thirty germinated haploid embryos converted into haploid plants. Fifty oat DH lines were obtained after colchicine treatment.Electronic supplementary materialThe online version of this article (doi:10.1007/s11627-016-9788-z) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.