In this paper, the nonlinear dynamic response of an inclined pinned-pinned beam with a constant cross section, finite length subjected to a concentrated vertical force traveling with a constant velocity is investigated. The study is focused on the mode summation method and also on frequency analysis of the governing PDEs equations of motion. Furthermore, the steady-state response is studied by applying the multiple scales method. The nonlinear response of the beam is obtained by solving two coupled nonlinear PDEs governing equations of planar motion for both longitudinal and transverse oscillations of the beam. The dynamic magnification factor and normalized time histories of mid-pint of the beam are obtained for various load velocity ratios and A. Mamandi is a Ph.D. Student. the outcome results have been illustrated and compared to the results with those obtained from traditional linear solution. The appropriate parametric study considering the effects of the linear viscous damping, the velocity of the traveling load, beam inclination angle under zero or nonzero axial load are carried out to capture the influence of the effect of large deflections caused by stretching effects due to the beam's immovable ends. It was seen that quadratic nonlinearity renders the softening effect on the dynamic response of the beam under the act of traveling load. Also in the case where the object leaves the inclined beam, its planar motion path is derived and the targeting accuracy is investigated and compared with those from the rigid solution assumption. Moreover, the stability analysis of steady-state response for the modes equations having quadratic nonlinearity was carried out and it was observed from the frequency response curves that for the considered parameters in the case of internal-external primary resonance, both saturation phenomenon and jump phenomenon can be predicted for the longitudinal excitation.Keywords Nonlinear vibrations · Inclined beam · Mode summation method · Frequency response analysis · Multiple scales method · Quadratic nonlinearity 278 A. Mamandi et al.
In this paper, the Nonlinear Normal Modes (NNMs) analysis for the case of three-to-one (3:1) internal resonance of a slender simply supported beam in presence of compressive axial load resting on a nonlinear elastic foundation is studied. Using the EulerBernoulli beam model, the governing nonlinear PDE of the beam's transverse vibration and also its associated boundary conditions are extracted. These nonlinear motion equation and boundary condition relations are solved simultaneously using four different approximate-analytical solution techniques, namely the method of Multiple Time Scales, the method of Normal Forms, the method of Shaw and Pierre, and the method of King and Vakakis. The obtained results at this stage using four different methods which are all in time-space domain are compared and it is concluded that all the methods result in a similar answer for the amplitude part of the transverse vibration. At the next step, the nonlinear normal modes are
Abstract. In this study, the nonlinear vibrations analysis of an inclined pinned-pinned self-weight Timoshenko beam made of linear, homogenous and isotropic material with a constant cross section and finite length subjected to a traveling mass/force with constant velocity is investigated. The nonlinear coupled partial differential equations of motion for the rotation of warped cross-section, longitudinal and transverse displacements are derived using the Hamilton's principle. These nonlinear coupled PDEs are solved by applying the Galerkin's method to obtain dynamic responses of the beam. The dynamic magnification factor and normalized time histories of mid-point of the beam are obtained for various load velocity ratios and the outcome results have been compared to the results with those obtained from linear solution. The influence of the large deflections caused by a stretching effect due to the beam's fixed ends is captured. It was seen that existence of quadratic-cubic nonlinear terms in the nonlinear governing coupled PDEs of motion causes stiffening (hardening) behavior of the dynamic responses of the self-weight beam under the act of a traveling mass as well as equivalent concentrated moving force. Furthermore, in a case where the object leaves the beam, its planar motion path is derived and the targeting accuracy is investigated and compared with those from the rigid solution assumption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.