Growing global demand and utilization of fossil fuels has elevated wealth creation, increased adverse impacts of climate change from greenhouse gases (GHGs) emissions, and endangered public health. In most developing countries, biomass wastes, which include but are not limited to agricultural residues, are produced in large quantities annually. They are either inefficiently used or disposed of indiscriminately, which threatens the environment. It is possible to convert these wastes, through densification, into high-density and energy-efficient briquettes. Densification of biomass into briquettes presents a renewable energy option as an alternative to fossil fuels. This paper reviews biomass briquetting with reference to biomass resources, feedstock pre-processing, briquetting process parameters, briquetting technology, and briquettes quality evaluation parameters. The review also includes the economic aspect of briquetting relating to costs and feasibility.
The objective of this research was to investigate the quality of hybrid briquettes developed from corncobs (CC) and oil palm trunk bark (OPTB) under a low-pressure densification technique. The materials were combined in varying ratios of CC to OPTB (100:0, 75:25, 50:50, 25:75, 0:100) and wastepaper pulp (10% by weight) was added to each mixture as a binder. The briquettes were produced using a manually operated 20-tonne hydraulic piston press at 28 °C temperature and ≤7 MPa compaction pressure. The mechanical strength of the briquettes was determined by the drop test and compression test methods, while a bomb calorimeter was used to determine the calorific values. The results showed that the physical properties of hybrid briquettes ranged from 9.24–10.00% moisture content, 0.38–0.40 g/cm3 density, and 87.60%–92.00% water resistance. Mechanical strength showed a 98.28%–99.08% shatter index and 18.47–21.75 MPa compressive strength, while calorific values ranged from 16.54–16.91 MJ/kg. The hybrid briquettes fared better than the CC briquettes. The significance of this study lies in the production of briquettes with suitable physical, mechanical and thermal properties by utilizing OPTB which have hitherto not been used, mixed with corncobs. This could bring substantial environmental and socio-economic benefits to rural communities of the developing countries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.