A two-phase electromembrane extraction (EME) was developed and directly coupled with gas chromatography mass spectrometry (GC-MS) analysis. The proposed method was successfully applied to the simultaneous determination of imipramine, desipramine, citalopram and sertraline. The model compounds were extracted from neutral aqueous sample solutions into the organic phase filled in the lumen of the hollow fiber. This method was accomplished with 1-heptanol as organic phase, by means of 60 V applied voltage and with the extraction time of 15 min. Experiments reported recoveries in the range of 69-87% from 1.2 mL neutral sample solution. The compounds were quantified by GC-MS instrument, with acceptable linearity ranging from 1 to 500 ng mL(-1) (R(2) in the range of 0.989 to 0.998), and repeatability (RSD) ranging between 7.5 and 11.5% (n = 5). The estimated detection limits (S/N ratio of 3:1) were less than 0.25 ng mL(-1). This novel approach based on two-phase EME brought advantages such as simplicity, low-costing, low detection limit and fast extraction with a total analysis time less than 25 min. These experimental findings were highly interesting and demonstrated the possibility of solving ionic species in the organic phase at the presence of electrical potential.
An electromembrane extraction procedure coupled with HPLC and visible detection was applied for the extraction of three textile azo dyes as organic salts. The extraction parameters such as extraction time, applied voltage, pH range, and concentration of salt added were optimized. A driving force of 60 V was applied to extract the analytes through 2-nitrophenyl octyl ether, used as the supported liquid membrane, into a neutral aqueous solution. This method required 20 min extraction time from a neutral sample solution. The proposed microextraction technique provided good linearity with correlation coefficients from 0.996 to 0.998 over a concentration range of 1.0-1000.0 ng/mL. The LODs of dyes were 0.30-0.75 ng/mL, while the reproducibility ranged from 6.7 to 12.9% (n = 6). Also, enrichment factors of 96-162 that corresponded to the recoveries ranging from 48 to 81% were achieved. Finally, the application of this new method was demonstrated on wastewater samples and some plants grown in contaminated environments. Excellent selectivity was obtained as no interfering peaks were detected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.