Tail-biting convolutional codes (TBCC) have been extensively applied in communication systems. This method is implemented by replacing the fixed-tail with tail-biting data. This concept is needed to achieve an effective decoding computation. Unfortunately, it makes the decoding computation becomes more complex. Hence, several algorithms have been developed to overcome this issue in which most of them are implemented iteratively with uncertain number of iteration. In this paper, we propose a VLSI architecture to implement our proposed reversed-trellis TBCC (RT-TBCC) algorithm. This algorithm is designed by modifying direct-terminating maximum-likelihood (ML) decoding process to achieve better correction rate. The purpose is to offer an alternative solution for tail-biting convolutional code decoding process with less number of computation compared to the existing solution. The proposed architecture has been evaluated for LTE standard and it significantly reduces the computational time and resources compared to the existing direct-terminating ML decoder. For evaluations on functionality and Bit Error Rate (BER) analysis, several simulations, System-on-Chip (SoC) implementation and synthesis in FPGA are performed.
The EEG is one of the main medical instruments used by clinicians in the analysis and diagnosis of epilepsy through visual observations or computers. Visual inspection is difficult, time-consuming, and cannot be conducted in real time. Therefore, we propose a digital system for the classification of epileptic EEG in real time on a Field Programmable Gate Array (FPGA). The implemented digital system comprised a communication interface, feature extraction, and classifier model functions. The Hjorth descriptor method was used for feature extraction of activity, mobility, and complexity, with KNN was utilized as a predictor in the classification stage. The proposed system, run on a The Zynq-7000 FPGA device, can generate up to 90.74% accuracy in normal, inter-ictal, and ictal EEG classifications. FPGA devices provided classification results within 0.015 s. The total memory LUT resource used was less than 10%. This system is expected to tackle problems in visual inspection and computer processing to help detect epileptic EEG using low-cost resources while retaining high performance and real-time implementation.
This paper proposed a design of an audio coprocessor and interface. The design is based on AMBA bus system that is easily interfaced into System on Chip (SoC). The design had been integrated with Leon 3 SoC and implemented into Altera TM DE2-115. In order to obtain a real-time audio processing, several audio interface and co-processor modules have been designed and integrated into SoC system. by using DMA access. The designed audio interface consists of WM8731 audiocodec driver and buffer that works in 48 kHz data-rate. The audio co-processor consists of hanning window filter and 256 point FFT/IFFT. The FFT/IFFT co-processor is provided to enable the audio process in both time and frequency domain. The Hann window is used to maintain the continuity of block processing. In order to provide high speed data processing, those modules are interfaced to SoC using DMA acccess.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.