Nowadays, coronavirus (COVID-19) is getting international attention due it considered as a life-threatened epidemic disease that hard to control the spread of infection around the world. Machine learning (ML) is one of intelligent technique that able to automatically predict the event with reasonable accuracy based on the experience and learning process. In the meantime, a rapid number of ML models have been proposed for predicate the cases of COVID-19. Thus, there is need for an evaluation and benchmarking of COVID-19 ML models which considered the main challenge of this study. Furthermore, there is no single study have addressed the problem of evaluation and benchmarking of COVID diagnosis models. However, this study proposed an intelligent methodology is to help the health organisations in the selection COVID-19 diagnosis system. The benchmarking and evaluation of diagnostic models for COVID-19 is not a trivial process. There are multiple criteria requires to evaluate and some of the criteria are conflicting with each other. Our study is formulated as a decision matrix (DM) that embedded mix of ten evaluation criteria and twelve diagnostic models for COVID-19. The multi-criteria decision-making (MCDM) method is employed to evaluate and benchmarking the different diagnostic models for COVID19 with respect to the evaluation criteria. An integrated MCDM method are proposed where TOPSIS applied for the benchmarking and ranking purpose while Entropy used to calculate the weights of criteria. The study results revealed that the benchmarking and selection problems associated with COVID19 diagnosis models can be effectively solved using the integration of Entropy and TOPSIS. The SVM (linear) classifier is selected as the best diagnosis model for COVID19 with the closeness coefficient value of 0.9899 for our case study data. Furthermore, the proposed methodology has solved the significant variance for each criterion in terms of ideal best and worst best value, beside issue when specific diagnosis models have same ideal best value. INDEX TERMS COVID19 diagnostic, machine learning, benchmarking methodology, chest X-rays images, entropy, TOPSIS, multi-criteria decision-making. The associate editor coordinating the review of this manuscript and approving it for publication was Zheng Xiao .
The ISFET sensing membrane is in direct contact with the electrolyte solution, determining the starting sensitivity of these devices. A SiO2 gate dielectric shows a low response sensitivity and poor stability. This paper proposes a comprehensive identification of different high-k materials which can be used for this purpose, rather than SiO2. The Gouy-Chapman and Gouy-Chapman-Stern models were combined with the Site-binding model, based on surface potential sensitivity, to achieve the work objectives. Five materials, namely Al2O3, Ta2O5, Hfo2, Zro2 and SN2O3, which are commonly considered for micro-electronic applications, were compared. This study has identified that Ta2O5 have a high surface potential response at around 59mV/pH, and also exhibits high stability in different electrolyte concentrations. The models used have been validated with real experimental data, which achieved excellent agreement. The insights gained from this study may be of assistance to determine the suitability of different materials before progressing to expensive real ISFET fabrication. Keywords:High-k material ISFET ISFET/electrolyte models pH sensitivity Surface stability
COVID-19 has depleted healthcare systems around the world. Extreme conditions must be defined as soon as possible so that services and treatment can be deployed and intensified. Many biomarkers are being investigated in order to track the patient’s condition. Unfortunately, this may interfere with the symptoms of other diseases, making it more difficult for a specialist to diagnose or predict the severity level of the case. This research develops a Smart Healthcare System for Severity Prediction and Critical Tasks Management (SHSSP-CTM) for COVID-19 patients. On the one hand, a machine learning (ML) model is projected to predict the severity of COVID-19 disease. On the other hand, a multi-agent system is proposed to prioritize patients according to the seriousness of the COVID-19 condition and then provide complete network management from the edge to the cloud. Clinical data, including Internet of Medical Things (IoMT) sensors and Electronic Health Record (EHR) data of 78 patients from one hospital in the Wasit Governorate, Iraq, were used in this study. Different data sources are fused to generate new feature pattern. Also, data mining techniques such as normalization and feature selection are applied. Two models, specifically logistic regression (LR) and random forest (RF), are used as baseline severity predictive models. A multi-agent algorithm (MAA), consisting of a personal agent (PA) and fog node agent (FNA), is used to control the prioritization process of COVID-19 patients. The highest prediction result is achieved based on data fusion and selected features, where all examined classifiers observe a significant increase in accuracy. Furthermore, compared with state-of-the-art methods, the RF model showed a high and balanced prediction performance with 86% accuracy, 85.7% F-score, 87.2% precision, and 86% recall. In addition, as compared to the cloud, the MAA showed very significant performance where the resource usage was 66% in the proposed model and 34% in the traditional cloud, the delay was 19% in the proposed model and 81% in the cloud, and the consumed energy was 31% in proposed model and 69% in the cloud. The findings of this study will allow for the early detection of three severity cases, lowering mortality rates.
Automatic heart disease prediction is a major global health concern. Effective cardiac treatment requires an accurate heart disease prognosis. Therefore, this paper proposes a new heart disease classification model based on the support vector machine (SVM) algorithm for improved heart disease detection. To increase prediction accuracy, the χ2 statistical optimum feature selection technique was used. The suggested model’s performance was then validated by comparing it to traditional models using several performance measures. The proposed model increased accuracy from 85.29% to 89.7%. Additionally, the componential load was reduced by half. This result indicates that our system outperformed other state-of-the-art methods in predicting heart disease.
The recent dramatic expansion of the COVID-19 outbreak is placing enormous strain on human society as a whole. Numerous biomarkers are being investigated in an effort to track the condition of the patient. This could interfere with signs of many other illnesses, making it more difficult for a specialist to diagnose or predict the severity level of the case. As a result, the focus of this research was on the development of a multiclass prediction system capable of dealing with three severity cases (severe, moderate, and mild). The lymphocyte to CRP ratio (C-reactive protein blood test) and SpO2 (blood oxygen saturation level) indicators were ranked and used as prediction system attributes. A machine learning model based on SVMs is created. A total of 78 COVID-19 patients were recruited from the Azizia primary health care sector/Wasit Health Directorate/Ministry of Health to form different combinations of COVID-19 clinical dataset. The outcomes demonstrate that the proposed approach had an average accuracy of 82%. The established prediction system allows for the early identification of three severity cases, which reduces deaths.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.