Lightweight physical unclonable functions (LPUFs) exploit manufacturing process variations of semiconductor integrated circuits (ICs) to protect IoT-based electronic and smart devices from new cyberattacks. This paper proposes two novel security techniques to enhance the robustness of LPUFs using configurable-based ring oscillator PUFs (CF-ROPUFs). These techniques are the intar-die frequency aware (IFA) approach to improve PUF reliability and the logarithmic gamma function (Ln) technique to enhance PUF randomness. The lightweight CF-ROPUF design is realized on hardware, and data samples are collected under varying temperatures and supply voltages over a population of 30 Spartan-3E FP-GAs.Experimental results of the IFA technique in terms of average Hamming Weight (HM) demonstrate that the percentage of the reliable RO sample frequencies PUF output is 98.5%. For the analysis, PUF reliability is evaluated in terms of accuracy, repeatability, and reproducibility, which are the international organization for Standardization (ISO) standards. The results indicate that the RO samples are accurately measured from the CF-ROPUFs mapped in all the chips. After using the proposed 1-out-of-r coding algorithm, the results demonstrate high average repeatability of 98.2% and a magnified average reproducibility of 99.63%. It is also shown that our CF-ROPUF design is immune from accelerated aging impacts reliability issues. Statistical results show thatLnenhances the normality and mitigates the negative impacts of the systematic process variations on RO sample frequencies. Randomness results show that CF-ROPUF binary response bits can successfully pass the 15 NIST test suites for true randomness with an enhanced percentage, 93.3%, with the application of the 1-out-of-r coding INDEX TERMS Lightweight hardware security, configurable ROPUF, PUF reliability, PUF aging, ISO standards.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.