The purpose of this paper is to outline the structure of the Egypt Government Excellence Award, as well as to investigate the role of adopting an excellence framework in developing public sector work nature and improving public services, as well as to attempt to identify and propose solutions to the practical problems and challenges posed by excellence awards.The paper will highlight and investigate critical success factors (CSFs) that influence the success of the excellence model's implementation and adoption in the Egyptian public sector. A qualitative method will be used to build a model for CSF.The paper has summarized potential CSF that has been analyzed in previous literature that developed different models with different methodologies according to industry context. The majority of literature has discussed and analyzed CSF regarding TQM principles, with very little literature having discovered CSF of Excellence Models.The paper uses a qualitative narrative approach for an exploratory purpose. The data has been collected and analyzed using human interactive data sources by using unstructured interviews with experts in excellence from Egypt and other countries that have a similar context to EGEA.The results have shown that the main top five CSF, which are considered the main factors that will help any public organization in Egypt to successfully implement excellence models, are leadership, human assets, culture, excellence model, and performance management system.
Bacterial infections are serious health threats. Emerging drug resistance in bacteria further poses serious challenges to the treatment options involving traditional antibiotics. Antimicrobial polymers disrupt the physical cell membrane integrity of bacteria to address the drug resistance problems. Here, we introduce a conceptually new class of antimicrobial polymers containing positively charged guanylurea backbones for enhanced antimicrobial effects. The initial structure-activity relationship studies demonstrate that poly(guanylurea piperazine)s (PGU-Ps) exhibit excellent antimicrobial activity against different types of bacteria with high selectivity. The new design concept of using a positively charged guanylurea backbone will contribute to the development of future biocompatible, specific, and selective antimicrobial polymers.
Infectious diseases are one of the main causes of death all over the world, with antimicrobial resistance presenting a great challenge. New antibiotics need to be developed to provide therapeutic treatment options, requiring novel drug targets to be identified and pursued. DNA topoisomerases control the topology of DNA via DNA cleavage–rejoining coupled to DNA strand passage. The change in DNA topological features must be controlled in vital processes including DNA replication, transcription, and DNA repair. Type IIA topoisomerases are well established targets for antibiotics. In this review, type IA topoisomerases in bacteria are discussed as potential targets for new antibiotics. In certain bacterial pathogens, topoisomerase I is the only type IA topoisomerase present, which makes it a valuable antibiotic target. This review will summarize recent attempts that have been made to identify inhibitors of bacterial topoisomerase I as potential leads for antibiotics and use of these inhibitors as molecular probes in cellular studies. Crystal structures of inhibitor–enzyme complexes and more in-depth knowledge of their mechanisms of actions will help to establish the structure–activity relationship of potential drug leads and develop potent and selective therapeutics that can aid in combating the drug resistant bacterial infections that threaten public health.
A topoisomerase‐DNA transient covalent complex can be a druggable target for novel topoisomerase poison inhibitors that represent a new class of antibacterial or anticancer drugs. Herein, we have investigated molecular features of the functionally important Escherichia coli topoisomerase I (EctopoI)‐DNA covalent complex (EctopoIcc) for molecular simulations, which is very useful in the development of new antibacterial drugs. To demonstrate the usefulness of our approach, we used a model small molecule (SM), NSC76027, obtained from virtual screening. We examined the direct binding of NSC76027 to EctopoI as well as inhibition of EctopoI relaxation activity of this SM via experimental techniques. We then performed molecular dynamics (MD) simulations to investigate the dynamics and stability of EctopoIcc and EctopoI‐NSC76027‐DNA ternary complex. Our simulation results show that NSC76027 forms a stable ternary complex with EctopoIcc. EctopoI investigated here also serves as a model system for investigating a complex of topoisomerase and DNA in which DNA is covalently attached to the protein.
We have previously reported the inhibition of bacterial topoisomerase I activity by a fluoroquinophenoxazine compound (FP-11g) with a 6-bipiperidinyl lipophilic side chain that exhibited promising antituberculosis activity (MIC = 2.5 μM against Mycobacterium tuberculosis , SI = 9.8). Here, we found that the compound is bactericidal towards Mycobacterium smegmatis , resulting in greater than 5 Log 10 reduction in colony-forming units [cfu]/mL following a 10 h incubation at 1.25 μM (4X MIC) concentration. Growth inhibition (MIC = 50 μM) and reduction in cfu could also be observed against a clinical isolate of Mycobacterium abscessus . Stepwise isolation of resistant mutants of M . smegmatis was conducted to explore the mechanism of resistance. Mutations in the resistant isolates were identified by direct comparison of whole-genome sequencing data from mutant and wild-type isolates. These include mutations in genes likely to affect the entry and retention of the compound. FP-11g inhibits Mtb topoisomerase I and Mtb gyrase with IC 50 of 0.24 and 27 μM, respectively. Biophysical analysis showed that FP-11g binds DNA as an intercalator but the IC 50 for inhibition of Mtb topoisomerase I activity is >10 fold lower than the compound concentrations required for producing negatively supercoiled DNA during ligation of nicked circular DNA. Thus, the DNA-binding property of FP-11g may contribute to its antimycobacterial mechanism, but that alone cannot account for the observed inhibition of M tb topoisomerase I.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.