Abstract-Latest embedded bio-signal analysis applications, targeting low-power Wireless Body Sensor Nodes (WBSNs), present conflicting requirements. On one hand, bio-signal analysis applications are continuously increasing their demand for high computing capabilities. On the other hand, long-term signal processing in WBSNs must be provided within their highly constrained energy budget. In this context, parallel processing effectively increases the power efficiency of WBSNs, but only if the execution can be properly synchronized among computing elements. To address this challenge, in this work we propose a hardware/software approach to synchronize the execution of bio-signal processing applications in multi-core WBSNs. This new approach requires little hardware resources and very few adaptations in the source code. Moreover, it provides the necessary flexibility to execute applications with an arbitrarily large degree of complexity and parallelism, enabling considerable reductions in power consumption for all multi-core WBSN execution conditions. Experimental results show that a multi-core WBSN architecture using the illustrated approach can obtain energy savings of up to 40%, with respect to an equivalent singlecore architecture, when performing advanced bio-signal analysis.
Abstract. This study presents a single-core and a multi-core processor architecture for health monitoring systems where slow biosignal events and highly parallel computations exist. The single-core architecture is composed of a processing core (PC), an instruction memory (IM) and a data memory (DM), while the multi-core architecture consists of PCs, individual IMs for each core, a shared DM and an interconnection crossbar between the cores and the DM. These architectures are compared with respect to power vs performance trade-offs for a multi-lead electrocardiogram signal conditioning application exploiting near threshold computing. The results show that the multi-core solution consumes 66% less power for high computation requirements (50.1 MOps/s), whereas 10.4% more power for low computation needs (681 kOps/s).
Abstract-Compressed sensing (CS) is a universal technique for the compression of sparse signals. CS has been widely used in sensing platforms where portable, autonomous devices have to operate for long periods of time with limited energy resources. Therefore, an ultra-low-power (ULP) CS implementation is vital for these kind of energy-limited systems. Sub-threshold (sub-VT) operation is commonly used for ULP computing, and can also be combined with CS. However, most established CS implementations can achieve either no or very limited benefit from sub-VT operation. Therefore, we propose a sub-VT application-specific instruction-set processor (ASIP), exploiting the specific operations of CS. Our results show that the proposed ASIP accomplishes 62x speed-up and 11.6x power savings with respect to an established CS implementation running on the baseline low-power processor.
In this study, the authors explore sequential and parallel processing architectures, utilising a custom ultra-low-power (ULP) processing core, to extend the lifetime of health monitoring systems, where slow biosignal events and highly parallel computations exist. To this end, a single-and a multi-core architecture are proposed and compared. The single-core architecture is composed of one ULP processing core, an instruction memory (IM) and a data memory (DM), while the multi-core architecture consists of several ULP processing cores, individual IMs for each core, a shared DM and an interconnection crossbar between the cores and the DM. These architectures are compared with respect to power/performance trade-offs for different target workloads of online biomedical signal analysis, while exploiting near threshold computing. The results show that with respect to the single-core architecture, the multi-core solution consumes 62% less power for high computation requirements (167 MOps/s), while consuming 46% more power for extremely low computation needs when the power consumption is dominated by leakage. Additionally, the authors show that the proposed ULP processing core, using a simplified instruction set architecture (ISA), achieves energy savings of 54% compared to a reference microcontroller ISA (PIC24).
Abstract-Embedded biosignal analysis involves a considerable amount of parallel computations, which can be exploited by employing low-voltage and ultra-low-power (ULP) parallel computing architectures. By allowing data and instruction broadcasting, single instruction multiple data (SIMD) processing paradigm enables considerable power savings and application speedup, in turn allowing for a lower voltage supply for a given workload. The state-of-the-art multi-core architectures for biosignal analysis however lack a bare, yet smart, synchronization technique among the cores, allowing lockstep execution of algorithm parts that can be performed using the SIMD, even in the presence of data-dependent execution flows. In this paper, we propose a lightweight synchronization technique to enhance an ULP multicore processor, resulting in improved energy efficiency through lockstep SIMD execution. Our results show that the proposed improvements accomplish tangible power savings, up to 64% for an 8-core system operating at a workload of 89 MOps/s while exploiting voltage scaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.