The fatigue life of crane steel structure will inevitably decrease in the course of work, which directly affects the work of crane. So the correct fatigue life evaluation is necessary. Based on crack propagation theory, a framework of assessing remaining fatigue life of crane metal structures is built in this paper. Moreover, in order to descript the analysis process, an example about fatigue life estimation of a shipbuilding gantry crane whose maximum hoist 100 ton was shown. During assessment of remaining fatigue life of aged crane structure, some important indexes were inspected such as corrosion,strength and defection in focused weld joints, besides of finite element simulation of structure. The results can also be used to evaluate the whole metal structure of this crane.
Gallium nitride (GaN) thin films samples were grown by metal-organic chemical vapor deposition (MOCVD) with ammonia and trimethyl-gallium, and the samples were annealed rapidly at different temperature. The scanning electron microscope (SEM) analysis was employed to study the surface morphology and lattice defects of the GaN thin films. The surface morphology of the thin films prepared at different condition was uniform and smoothly. The relationship of the films defects and the annealed temperature were summarized.
Copper nitride films were prepared by reactive magnetron sputtering on glass sheets at different deposition conditions. The surface morphology of the films was evaluated by a scanning electron microscope (SEM). The SEM images demonstrate that the films have a compact structure. The structure of the films was characterized by X-ray diffraction (XRD). We focused on the influence of preparation parameters on the adhesion and electrical properties of the films. The metallurgical microscope results indicate that the adhesion of the films enhances with increasing deposition power. The current-voltage (I-V) measurement results show that the resistivity of the films increases with the increasing lattice constants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.