h i g h l i g h t sInformation on oligosaccharides production from oil palm biomass is very scarce. Oligosaccharides production from OPEFB fibre via autohydrolysis is demonstrated. Substantial yield of XOS is achieved using non-isothermal conditions. High purity of refined XOS with wide ranges of DP were obtained.
a r t i c l e i n f o
a b s t r a c tOil palm empty fruit bunches (OPEFB) fibre, a by-product generated from non-woody, tropical perennial oil palm crop was evaluated for xylooligosaccharides (XOS) production. Samples of OPEFB fibre were subjected to non-isothermal autohydrolysis treatment using a temperature range from 150 to 220°C. The highest XOS concentration, 17.6 g/L which relayed from solubilisation of 63 g/100 g xylan was achieved at 210°C and there was a minimum amount of xylose and furfural being produced. The chromatographic purification which was undertaken to purify the oligosaccharide-rich liquor resulted in a product with 74-78% purity, of which 83-85% was XOS with degree of polymerisation (DP) between 5 and 40.
Xylo-oligosaccharides and xylo-polysaccharides (XOS, XPS) produced by autohydrolysis of the fibre from oil palm empty fruit bunches (OPEFB) were purified using gel filtration chromatography to separate the XOS and XPS from the crude autohydrolysis liquor. Six mixed fractions of refined XOS and XPS with average degree of polymerisation (avDP) of 4-64 were obtained. These were characterised in terms of their composition and size by HPLC, MALDI-ToF-MS (selected fractions) and carbohydrate gel electrophoresis (PACE). They were assessed in batch culture fermentations using faecal inocula to determine their ability to modulate the human faecal microbiota in vitro by measuring the bacterial growth, organic acid production and the XOS assimilation profile. The gut microbiota was able to utilise all the substrates and there was a link between the avDP with the fermentation properties. In general, XOS/XPS preparations of lower avDP promote better Bifidobacterium growth and organic acid production.
Gluten avoidance is becoming a popular diet trend around the world. In this study, green Saba banana flour (GSBF) was used to produce a gluten-free (GF) steamed cake. The effects of soy protein isolate (SPI) (0%, 10%, 15%) and Ovalette (0%, 3.5%, 7%) on the quality of the cake were investigated. Physicochemical properties of the flours were measured. The viscosity and specific gravity of the batters; as well as the specific volume, weight loss and texture profile of the resulting cakes were determined. Sensory evaluation was performed to compare the acceptance of the cake formulations. The macronutrient and resistant starch content of the cakes were determined. The use of an appropriate level of SPI and Ovalette was found to effectively enhance the aeration of the cake batter and improved the specific volume and weight loss of the cake. The presence of Ovalette was essential to soften the texture of the cake. GF cake supplemented with 10% SPI and 3.5% Ovalette obtained the highest sensorial acceptance. The nutritional quality of this sample was significantly improved, whereby it contained higher protein than the gluten-containing counterpart. GSBF also contributed to the high dietary fiber and resistant starch content of the cake.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.