During the outbreak of Coronavirus Disease 2019 (COVID-19) all over the world, the mental health conditions of health care workers are of great importance to ensure the efficiency of rescue operations. The current study examined the effect of social support on mental health of health care workers and its underlying mechanisms regarding the mediating role of resilience and moderating role of age during the epidemic. MethodsSocial Support Rating Scale (SSRS), Connor-Davidson Resilience scale (CD-RISC) and Symptom Checklist 90 (SCL-90) were administrated among 1472 health care workers from Jiangsu Province, China during the peak period of COVID-19 outbreak. Structural equation modeling (SEM) was used to examine the mediation effect of resilience on the relation between social support and mental health, whereas moderated mediation analysis was performed by Hayes PROCESS macro. ResultsThe findings showed that resilience could partially mediate the effect of social support on mental health among health care workers. Age group moderated the indirect relationship between social support and mental health via resilience. Specifically, compared with younger health care workers, the association between resilience and mental health would be attenuated in the middle-aged workers. ConclusionsThe results add knowledge to previous literature by uncovering the underlying mechanisms between social support and mental health. The present study has profound implications for mental health services for health care workers during the peak period of COVID-19.
In this paper, a method for detecting rapid rice disease based on FCM-KM and Faster R-CNN fusion is proposed to address various problems with the rice disease images, such as noise, blurred image edge, large background interference and low detection accuracy. Firstly, the method uses a twodimensional filtering mask combined with a weighted multilevel median filter (2DFM-AMMF) for noise reduction, and uses a faster two-dimensional Otsu threshold segmentation algorithm (Faster 2D-Otsu) to reduce the interference of complex background with the detection of target blade in the image. Then the dynamic population firefly algorithm based on the chaos theory as well as the maximum and minimum distance algorithm is applied for optimization of the K-Means clustering algorithm (FCM-KM) to determine the optimal clustering class k value while addressing the tendency of the algorithm to fall into the local optimum problem. Combined with the R-CNN algorithm for the identification of rice diseases, FCM-KM analysis is conducted to determine the different sizes of the Faster R-CNN target frame. As revealed by the application results of 3010 images, the accuracy and time required for detection of rice blast, bacterial blight and blight were 96.71%/0.65s, 97.53%/0.82s and 98.26%/0.53s, respectively, indicating clearly that the method is more capable of detecting rice diseases and improving the identification accuracy of Faster R-CNN algorithm, while reducing the time required for identification.
The identification of maize leaf diseases will meet great challenges because of the difficulties in extracting lesion features from the constant-changing environment, uneven illumination reflection of the incident light source and many other factors. In this paper, a novel maize leaf disease recognition method is proposed. In this method, we first designed a maize leaf feature enhancement framework with the capability of enhancing the features of maize under the complex environment. Then a novel neural network is designed based on backbone Alexnet architecture, named DMS-Robust Alexnet. In the DMS-Robust Alexnet, dilated convolution and multi-scale convolution are combined to improve the capability of feature extraction. Batch normalization is performed to prevent network over-fitting while enhancing the robustness of the model. PRelu activation function and Adabound optimizer are employed to improve both convergence and accuracy. In experiments, it is validated from different perspectives that the maize leaf disease feature enhancement algorithm is conducive to improving the capability of the DMS-Robust Alexnet identification. Our method demonstrates strong robustness for maize disease images collected in the natural environment, providing a reference for the intelligent diagnosis of other plant leaf diseases. INDEX TERMS Image enhancement, dilated convolution, multi-scale convolution, maize leaf disease, convolutional neural network.
Medical staff were battling against coronavirus disease 2019 (COVID-19) at the expense of their physical and mental health, particularly at risk for posttraumatic stress disorder (PTSD). In this case, intervening PTSD of medical staff and preparing them for future outbreaks are important. Previous studies showed that perceived stress was related to the development of PTSD. Hence, in this study, the association between risk perception of medical staff and PTSD symptoms in COVID-19 and the potential links were explored. Three hundred four medical staff's exposure to COVID-19 patients, risk perception for working during COVID-19, PTSD symptoms, anxiety, and sleep quality were measured. Mediation analysis tested the indirect effects of anxiety and sleep quality on the relationship between risk perceptions and PTSD symptoms; 27.6% of participants were deemed as having probable PTSD diagnosis. Mediation analysis showed a significant chain-mediating effect of anxiety and sleep quality on the relationships between risk perceptions and PTSD symptoms; higher risk perceptions were related to increased anxiety, worsened sleep quality, and severe PTSD symptoms. Conclusively, medical staff have a high prevalence of PTSD symptoms after 3 months of COVID-19. Their PTSD symptoms were associated with the perceived risk level through the potential links with anxiety and sleep quality. Therefore, risk perception could be critical for our medical staff's responses to public health emergencies. It could be plausible to intervene in the perceived stress to alleviate aroused anxiety and improve sleep quality and thereby deter the development of PTSD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.