Microbial metabolites are known to modulate immune responses of the host. The main metabolites derived from microbial fermentation of dietary fibers in the intestine, short-chain fatty acids (SCFA), affect local and systemic immune functions. Here we show that SCFA are regulators of osteoclast metabolism and bone mass in vivo. Treatment of mice with SCFA as well as feeding with a high-fiber diet significantly increases bone mass and prevents postmenopausal and inflammation-induced bone loss. The protective effects of SCFA on bone mass are associated with inhibition of osteoclast differentiation and bone resorption in vitro and in vivo, while bone formation is not affected. Mechanistically, propionate (C3) and butyrate (C4) induce metabolic reprogramming of osteoclasts resulting in enhanced glycolysis at the expense of oxidative phosphorylation, thereby downregulating essential osteoclast genes such as TRAF6 and NFATc1. In summary, these data identify SCFA as potent regulators of osteoclast metabolism and bone homeostasis.
Gut microbial dysbiosis is associated with the development of autoimmune disease, but the mechanisms by which microbial dysbiosis affects the transition from asymptomatic autoimmunity to inflammatory disease are incompletely characterized. Here, we identify intestinal barrier integrity as an important checkpoint in translating autoimmunity to inflammation. Zonulin family peptide (zonulin), a potent regulator for intestinal tight junctions, is highly expressed in autoimmune mice and humans and can be used to predict transition from autoimmunity to inflammatory arthritis. Increased serum zonulin levels are accompanied by a leaky intestinal barrier, dysbiosis and inflammation. Restoration of the intestinal barrier in the pre-phase of arthritis using butyrate or a cannabinoid type 1 receptor agonist inhibits the development of arthritis. Moreover, treatment with the zonulin antagonist larazotide acetate, which specifically increases intestinal barrier integrity, effectively reduces arthritis onset. These data identify a preventive approach for the onset of autoimmune disease by specifically targeting impaired intestinal barrier function.
Diverse microbial signatures within the intestinal microbiota have been associated with intestinal and systemic inflammatory diseases, but whether these candidate microbes actively modulate host phenotypes or passively expand within the altered microbial ecosystem is frequently not known. Here we demonstrate that colonization of mice with a member of the genus Prevotella, which has been previously associated to colitis in mice, exacerbates intestinal inflammation. Our analysis revealed that Prevotella intestinalis alters composition and function of the ecosystem resulting in a reduction of short-chain fatty acids, specifically acetate, and consequently a decrease in intestinal IL-18 levels during steady state. Supplementation of IL-18 to Prevotella-colonized mice was sufficient to reduce intestinal inflammation. Hence, we conclude that intestinal Prevotella colonization results in metabolic changes in the microbiota, which reduce IL-18 production and consequently exacerbate intestinal inflammation, and potential systemic autoimmunity.
SummaryInflammatory bowel disease comprises a group of heterogeneous diseases characterized by chronic and relapsing mucosal inflammation. Alterations in microbiota composition have been proposed to contribute to disease development, but no uniform signatures have yet been identified. Here, we compare the ability of a diverse set of microbial communities to exacerbate intestinal inflammation after chemical damage to the intestinal barrier. Strikingly, genetically identical wild-type mice differing only in their microbiota composition varied strongly in their colitis susceptibility. Transfer of distinct colitogenic communities in gene-deficient mice revealed that they triggered disease via opposing pathways either independent or dependent on adaptive immunity, specifically requiring antigen-specific CD4+ T cells. Our data provide evidence for the concept that microbial communities may alter disease susceptibility via different immune pathways despite eventually resulting in similar host pathology. This suggests a potential benefit for personalizing IBD therapies according to patient-specific microbiota signatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.