Heart disease continues to be the leading cause of death in the United States. The demand for cardiovascular bypass procedures increases annually. Expanded polytetrafluoroethylene is a popular material for replacement implants, but it does have drawbacks such as high thrombogenicity and low patency, particularly in small diameter grafts. Hyaluronan, a naturally occurring polysaccharide in the human body, is known for its wound healing and anticoagulant properties. In this work, we demonstrate that treating the luminal surface of expanded polytetrafluoroethylene grafts with hyaluronan improves hemocompatibility without notably changing its mechanical properties and without significant cytotoxic effects. Surface characterization such as ATR-FTIR and contact angle goniometry demonstrates that hyaluronan treatment successfully changes the surface chemistry and increases hydrophilicity. Tensile properties such as elastic modulus, tensile strength, yield stress and ultimate strain are unchanged by hyaluronan enhancement. Durability data from flow loop studies demonstrate that hyaluronan is durable on the expanded polytetrafluoroethylene inner lumen. Hemocompatibility tests reveal that hyaluronan-treated expanded polytetrafluoroethylene reduces blood clotting and platelet activation. Together our results indicate that hyaluronan-enhanced expanded polytetrafluoroethylene is a promising candidate material for cardiovascular grafts.
Background
Restoring or improving seated stability after spinal cord injury (SCI) can improve the ability to perform activities of daily living by providing a dynamic, yet stable, base for upper extremity motion. Seated stability can be obtained with activation of the otherwise paralyzed trunk and hip musculature with neural stimulation, which has been shown to extend upper limb reach and improve seated posture.
Methods
We implemented a proportional, integral, derivative (PID) controller to maintain upright seated posture by simultaneously modulating both forward flexion and lateral bending with functional neuromuscular stimulation. The controller was tested with a functional reaching task meant to require trunk movements and impart internal perturbations through rapid changes in inertia due to acquiring, moving, and replacing objects with one upper extremity. Five subjects with SCI at various injury levels who had received implanted stimulators targeting their trunk and hip muscles participated in the study. Each subject was asked to move a weighted jar radially from a center home station to one of three target stations. The task was performed with the controller active, inactive, or with a constant low level of neural stimulation. Trunk pitch (flexion) and roll (lateral bending) angles were measured with motion capture and plotted against each other to generate elliptical movement profiles for each task and condition. Postural sway was quantified by calculating the ellipse area. Additionally, the mean effective reach (distance between the shoulder and wrist) and the time required to return to an upright posture was determined during reaching movements.
Results
Postural sway was reduced by the controller in two of the subjects, and mean effective reach was increased in three subjects and decreased for one. Analysis of the major direction of motion showed return to upright movements were quickened by 0.17 to 0.32 s. A 15 to 25% improvement over low/no stimulation was observed for four subjects.
Conclusion
These results suggest that feedback control of neural stimulation is a viable way to maintain upright seated posture by facilitating trunk movements necessary to complete reaching tasks in individuals with SCI. Replication of these findings on a larger number of subjects would be necessary for generalization to the various segments of the SCI population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.