BackgroundA hallmark feature of Parkinson's disease (PD) is the build‐up of α‐synuclein protein aggregates throughout the brain; however α‐synuclein is also expressed in enteric neurons. Gastrointestinal (GI) symptoms and pathology are frequently reported in PD, including constipation, increased intestinal permeability, glial pathology, and alterations to gut microbiota composition. α‐synuclein can propagate through neuronal systems but the site of origin of α‐synuclein pathology, whether it be the gut or the brain, is still unknown. Physical exercise is associated with alleviating symptoms of PD and with altering the composition of the gut microbiota.MethodsThis study investigated the effects of bilateral nigral injection of adeno‐associated virus (AAV)‐α‐synuclein on enteric neurons, glia and neurochemistry, the gut microbiome, and bile acid metabolism in rats, some of whom were exposed to voluntary exercise.Key ResultsNigral overexpression of α‐synuclein resulted in significant neuronal loss in the ileal submucosal plexus with no change in enteric glia. In contrast, the myenteric plexus showed a significant increase in glial expression, while neuronal numbers were maintained. Concomitant alterations were observed in the gut microbiome and related bile acid metabolism. Voluntary running protected against neuronal loss, increased enteric glial expression, and modified gut microbiome composition in the brain‐injected AAV‐α‐synuclein PD model.Conclusions and InferencesThese results show that developing nigral α‐synuclein pathology in this PD model exerts significant alterations on the enteric nervous system (ENS) and gut microbiome that are receptive to modification by exercise. This highlights brain to gut communication as an important mechanism in PD pathology.
Transplantation of embryonic dopaminergic neurones has shown promise for the treatment of Parkinson's disease (PD), but this approach is limited by the poor survival of the transplanted cells. Exogenous dopaminergic neurotrophic factors such as growth/differentiation factor 5 (GDF5) have been found to enhance the survival of transplanted dopaminergic neurones. However, this approach is limited by the rapid degradation of such factors in vivo; thus, methods for long-term delivery of these factors are under investigation. The present study shows, using optimised lipid-mediated transfection procedures, that overexpression of GDF5 significantly improves the survival of dopaminergic neurones in cultures of embryonic day (E) 13 rat ventral mesencephalon (VM) and protects them against 6-hydroxydopamine (6-OHDA)-induced toxicity. In another experiment, E13 VM cells were transfected with GDF5 after 1 day in vitro (DIV), then transplanted into 6-OHDA-lesioned adult rat striata after 2 DIV. The survival of these E13 VM dopaminergic neurones after transfection and transplantation was as least as high as that of freshly dissected E14 VM dopaminergic neurones, demonstrating that transfection was not detrimental to these cells. Furthermore, GDF5-overexpressing E13 VM transplants significantly reduced amphetamine-induced rotational asymmetry in the lesioned rats. This study shows that lipid-mediated transfection in vitro prior to transplantation is a valid approach for the introduction of neurotrophic proteins such as GDF5, as well as lending further support to the potential use of GDF5 in neuroprotective therapy for PD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.