Novel polyurethanes with zwitterionic sulfobetaines, termed PUR-APS, were designed and synthesized by chain-extension of biodegradable poly(ε-caprolactone) containing N,N'-bis (2-hydroxyethyl) methylamine ammonium propane sulfonate (PCL-APS) with hexamethylene diisocyanate (HDI). The bulk properties of polymers were characterized by nuclear magnetic resonance spectrum (NMR), Fourier transform infrared spectroscopy (FTIR), gel permeation chromatograph (GPC), and differential scanning calorimetry (DSC). Results showed that the polymers were successfully synthesized. Water contact angles (WCAs) and X-ray photoelectron spectroscopy (XPS) revealed that molecular chains of the polymers rearranged after soaking in water. The amount of protein adsorption, determined by bicinchoninic acid (BCA) assay, was less than 300 ng/cm(2) and decreased after hydration. The blood compatibility of the polymers was evaluated by the degree of hemolytic and activated partial thromboplastic time (APTT) and prothrombin time (PT). Results indicated that PUR-APS polymers had good blood compatibility. Therefore, polyurethanes containing sulfobetaines have a great potential for biomedical application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.