Effective detection of autism spectrum disorder (ASD) is a complicated procedure, due to the hundreds of parameters suggested to be implicated in its etiology. As such, machine learning methods have been consistently applied to facilitate diagnosis, although the scarcity of potent autism-related biomarkers is a bottleneck. More importantly, the variability of the imported attributes among different sites (e.g., acquisition parameters) and different individuals (e.g., demographics, movement, etc.) pose additional challenges, eluding adequate generalization and universal modeling. The present study focuses on a data-driven approach for the identification of efficacious biomarkers for the classification between typically developed (TD) and ASD individuals utilizing functional magnetic resonance imaging (fMRI) data on the default mode network (DMN) and non-physiological parameters. From the fMRI data, static and dynamic connectivity were calculated and fed to a feature selection and classification framework along with the demographic, acquisition and motion information to obtain the most prominent features in regard to autism discrimination. The acquired results provided high classification accuracy of 76.63%, while revealing static and dynamic connectivity as the most prominent indicators. Subsequent analysis illustrated the bilateral parahippocampal gyrus, right precuneus, midline frontal, and paracingulate as the most significant brain regions, in addition to an overall connectivity increment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.