The feasibility of etching Cu/low-k interconnects by using a low global warming potential CF3I plasma was studied. Low-damage etching was done and porous SiOC (p-SiOC, k<2.6) film with low roughness was produced. Exposing p-SiOC film to CF3I plasma was found to suppress the decrease in the CH3 group and the increase in the k value compared to those of conventional CF4 and C4F6 plasmas. These effects are due to the low UV intensity and small amount of F radicals of CF3I plasma. The authors also found that the etching profile of CF3I plasma was comparable with that of CF4 plasma. Since the etching selectivity (p-SiOC∕ArF photoresist) of CF3I plasma is higher than that of CF4 plasma, the remaining photoresist thickness increases after etching, thus suppressing line edge roughness (LER). The decreased LER mitigated degradation of IV and time dependent dielectric breakdown characteristics in Cu interconnects. They also found that the roughness on the bottom surface of the p-SiOC trench was reduced. These benefits are due to CF3I plasma’s low reactivity with the carbon in photoresists and p-SiOC films. Based on these findings, they believe that the environmentally friendly CF3I gas has great promise as a p-SiOC etching material.
The performance of interdigitated back contact silicon heterojunction solar cells having overlapped p/i and n/i a-Si:H layers on the back has been investigated by two-dimensional simulation in comparison with the conventional cell structure having a gap between p/i and n/i layers. The results show that narrower overlap width leads to higher short circuit current and conversion efficiency, especially for poor heterojunction interface and thinner silicon substrate of the cells in addition to narrower uncovered width of p/i layer by a metal electrode. This is similar to the gap width dependence in the conventional cells, since both overlap and gap act as dead area for diffused excess carriers in the back contacts.
Interface defects in state-of-the-art semiconductors have a strong impact on device performance. These defects are often generated during device fabrication, in which a variety of plasma processing is used for deposition, etching and implantation. Here, we present the ion-induced defects in hydrogenated amorphous silicon (a-Si:H) and crystalline silicon (c-Si) heterojunction. The experiments of argon ion (Ar+) irradiation over an a-Si:H/c-Si stack are systematically performed. The results suggest that the defects are generated not only by the impact of Ar+ (i.e. well-known effects), but also by another unique effect associated with “hot” mobile hydrogens (H). The mobile H atoms generated near the a-Si:H surface by the impact of Ar+ diffuse deeper, and they generate the a-Si:H/c-Si interface defects such as dangling bonds. The diffusion length of mobile H is determined to be 2.7 ± 0.3 nm, which indicates efficient reactions of mobile H with weak bonds in an a-Si:H network structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.