The earliest intracellular signals determined in T cell activation are local, sub-second Ca2+ microdomains (1). Here we identify a Ca2+ entry component involved in Ca2+ microdomain formation in both non-stimulated and stimulated cells. In non-stimulated cells, spontaneous small Ca2+ microdomains depend on expression of ORAI1, STIM1, and STIM2. Using T cells stably transfected with ORAI1 fused to a genetically encoded Ca2+ indicator for optical imaging spontaneous Ca2+ microdomains depending on ORAI1 were also detected. Super resolution microscopy of non-stimulated T cells resulted in identification of a circular subplasmalemmal region with a diameter of approx. 300 nm with preformed patches of co-localized ORAI1, ryanodine receptors (RYR), and STIM1. Preformed complexes of STIM1 and ORAI1 in non-stimulated cells were confirmed by co-immunoprecipitation and Förster resonance energy transfer studies.
Furthermore, within the first second of T cell receptor (TCR) stimulation, Ca2+ microdomain numbers increase in the subplasmalemmal space, an effect not observed upon genetic deletion of Orai1, Stim2 or Ryr1 or upon antagonism of the Ca2+ mobilizing second messenger nicotinic acid adenine dinucleotide phosphate (NAADP).
Taken together, while preformed clusters of STIM and ORAI1 allow for local Ca2+ entry events in non-stimulated cells, upon TCR activation, NAADP-evoked Ca2+ release via RYR1, in tight interplay with Ca2+ entry via ORAI1 and STIM, rapidly increases the number of Ca2+ microdomains, thereby initiating spread of Ca2+ signals deeper into the cytoplasm to promote full T cell activation.
NAADP-evoked Ca2+ release through type 1 ryanodine receptors (RYR1) is a major mechanism underlying the earliest signals in T cell activation, which are the formation of Ca2+ microdomains. In our characterization of the molecular machinery underlying NAADP action, we identified an NAADP-binding protein, called hematological and neurological expressed 1–like protein (HN1L) [also known as Jupiter microtubule-associated homolog 2 (JPT2)]. Gene deletion of Hn1l/Jpt2 in human Jurkat and primary rat T cells resulted in decreased numbers of initial Ca2+ microdomains and delayed the onset and decreased the amplitude of global Ca2+ signaling. Photoaffinity labeling demonstrated direct binding of NAADP to recombinant HN1L/JPT2. T cell receptor/CD3–dependent coprecipitation of HN1L/JPT2 with RYRs and colocalization of these proteins suggest that HN1L/JPT2 connects NAADP formation with the activation of RYR channels within the first seconds of T cell activation. Thus, HN1L/JPT2 enables NAADP to activate Ca2+ release from the endoplasmic reticulum through RYR.
AbstractHeme is a multifaceted molecule. While serving as a prosthetic group for many important proteins, elevated levels are toxic to cells. The complexity of this stimulus has shaped bacterial network evolution. However, only a small number of targets controlled by heme-responsive regulators have been described to date. Here, we performed chromatin affinity purification and sequencing to provide genome-wide insights into in vivo promoter occupancy of HrrA, the response regulator of the heme-regulated two-component system HrrSA of Corynebacterium glutamicum. Time-resolved profiling revealed dynamic binding of HrrA to more than 200 different genomic targets encoding proteins associated with heme biosynthesis, the respiratory chain, oxidative stress response and cell envelope remodeling. By repression of the extracytoplasmic function sigma factor sigC, which activates the cydABCD operon, HrrA prioritizes the expression of genes encoding the cytochrome bc1-aa3 supercomplex. This is also reflected by a significantly decreased activity of the cytochrome aa3 oxidase in the ΔhrrA mutant. Furthermore, our data reveal that HrrA also integrates the response to heme-induced oxidative stress by activating katA encoding the catalase. These data provide detailed insights in the systemic strategy that bacteria have evolved to respond to the versatile signaling molecule heme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.