Cytochrome P450 (CYP) monooxygenases catalyze the oxidation of a large number of endogenous compounds and the majority of ingested environmental chemicals, leading to their elimination and often to their metabolic activation to toxic products. This enzyme system therefore provides our primary defense against xenobiotics and is a major determinant in the therapeutic efficacy of pharmacological agents. To evaluate the importance of hepatic P450s in normal homeostasis, drug pharmacology, and chemical toxicity, we have conditionally deleted the essential electron transfer protein, NADH:ferrihemoprotein reductase (EC 1.6.2.4, cytochrome P450 reductase, CPR) in the liver, resulting in essentially complete ablation of hepatic microsomal P450 activity. Hepatic CPR-null mice could no longer break down cholesterol because of their inability to produce bile acids, and whereas hepatic lipid levels were significantly increased, circulating levels of cholesterol and triglycerides were severely reduced. Loss of hepatic P450 activity resulted in a 5-fold increase in P450 protein, indicating the existence of a negative feedback pathway regulating P450 expression. Profound changes in the in vivo metabolism of pentobarbital and acetaminophen indicated that extrahepatic metabolism does not play a major role in the disposition of these compounds. Hepatic CPR-null mice developed normally and were able to breed, indicating that hepatic microsomal P450-mediated steroid hormone metabolism is not essential for fertility, demonstrating that a major evolutionary role for hepatic P450s is to protect mammals from their environment. The hepatic cytochrome P450 (CYP)1 -dependent monoxygenase system plays a central role in mammalian defense against harmful environmental chemicals (1); it is also a major determinant of the half-life and pharmacological properties of therapeutic drugs and in certain cases, mediates the activation of drugs, toxins, and carcinogens to their ultimate toxic species (2, 3). Several other functions have been ascribed to hepatic P450s, including control of cholesterol and steroid hormone metabolism and bile acid biosynthesis (4). However, for certain of these pathways, the exact role of P450s in normal homeostasis is unknown.Over the last four decades, there have been significant advances in understanding the functions, genetics, and regulation of these enzymes and more recently their structure (5). However, a great deal remains to be learned about the expression and regulation of P450s, and their endogenous function(s), particularly in individual tissues. The size and diversity of the P450 multigene family results in great difficulties in dissecting out the function(s) of individual enzymes, particularly as many of those involved in foreign compound metabolism exhibit overlapping substrate specificities and may be expressed to a greater or lesser extent in almost every cell and tissue. The contribution that P450s in any particular tissue make to the overall pharmacokinetics of a drug is still, in the majority of cases,...
Cytochrome P450s play a central role in the metabolism and disposition of an extremely wide range of drugs and chemical carcinogens. Individual differences in the expression of these enzymes may be an important determinant in susceptibility to adverse drug reactions, chemical toxins and mutagens. In this paper, we have measured the relative levels of expression of cytochrome P450 isoenzymes from eight gene families or subfamilies in a panel of twelve human liver samples in order to determine the individuality in their expression and whether any forms are co-regulated. Isoenzymes were identified in most cases on Western blots based on the mobility of authentic recombinant human cytochrome P450 standards. The levels of the following P450 proteins correlated with each other: CYP2A6, CYP2B6 and a protein from the CYP2C gene subfamily, CYP2E1 and a member of the CYP2A gene subfamily, CYP2C8, CYP3A3/A4 and total cytochrome P450 content. Also, the levels of two proteins in the CYP4A gene subfamily were highly correlated. These correlations are consistent with the relative regulation of members of these gene families in rats or mice. In addition, the level of expression of specific isoenzymes has also been compared with the rate of metabolism of a panel of drugs, carcinogens and model P450 substrates. These latter studies demonstrate and confirm that the correlations obtained in this manner represent a powerful approach towards the assignment of the metabolism of substrates by specific human P450 isoenzymes.
1. We have constructed a full-length human liver cytochrome P450IIA cDNA from a partial-length clone by oligonucleotide-directed mutagenesis, and subcloned it into the monkey kidney (COS-7) cell expression vector, pSVL. 2. The cDNA encodes a 49 kDa protein with coumarin 7-hydroxylase (COH) activity which cross-reacts with antisera to the mouse cytochrome P-450 isoenzyme responsible for COH activity and comigrates with a human liver microsomal protein. 3. Western blot analysis of a panel of human livers indicates that the level of the 49 kDa protein, detected using antisera to either the mouse COH P-450 or rat P450IIA1 protein, correlates very highly with COH activity. 4. Antisera to the rat P450IIA1 protein can inhibit COH activity in human liver microsomes. Taken together, these data indicate that a member of the P450IIA subfamily is responsible for most, if not all, of the COH activity in human liver.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.