Ursolic acid (UA) is a food-plant-derived natural product which has good anticancer activities and low toxicity. However, the poor water solubility of UA limits its application in clinic. To address this issue, we developed a carrier-free nanodrug by self-assembly of UA. Here, we showed that UA nanoparticles (NPs) have a near-spherical shape with a diameter of ∼150 nm. UA NPs exhibited higher antiproliferative activity; significantly caused apoptosis; decreased the expression of COX-2/VEGFR2/VEGFA; and increased the immunostimulatory activity of TNF-α, IL-6, and IFN-β and decreased the activity of STAT-3 in A549 cells in vitro. Furthermore, UA NPs could inhibit tumor growth and have the ability of liver protection in vivo. More importantly, UA NPs could significantly improve the activation of CD4+ T-cells, which indicated that UA NPs have the potential for immunotherapy. Overall, a carrier-free UA nanodrug may be a promising drug to further enhance their anticancer efficacy and immune function.
A targeting drug delivery system (TDDS) can selectively deliver antitumor drugs to cancerous parts to improve its anticancer efficacy. Hence, a targeted drug delivery system (UA/siVEGF@MSN-FA) coloading ursolic acid (UA) and vascular endothelial growth factor (VEGF) targeted siRNA (siVEGF) based on mesoporous silica (MSN) nanocarrier modified by a folic acid (FA) molecule was designed and synthesized. The MSN-FA nanoparticles were investigated for shape, diameter, and zeta potential and and by infrared (IR) spectroscopy. FR-overexpressing HeLa cells and FR-negative HepG2 cell lines were used to evaluate the in vitro cellular uptake and the cytotoxicity of MSN-FA nanoparticles. The morphology of HeLa cells transfected with siVEGF@MSN-FA was observed using fluorescence microscopy. Our findings demonstrated that UA@MSN-FA nanoparticles were near-spherical, and the particle size was about 209 ± 9.21 nm. The MSN-FA nanocarrier not only could enhance the in vitro transfection efficiency and the stability of siVEGF but also could further improve the targeted anticancer efficacy of UA and siVEGF via the active targeting property of FA. Overall, the MSN-FA drug delivery system could serve as an excellent material in biomedical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.