Experimental results and analysis of sparse microwave imaging from spaceborne radar raw data SCIENCE CHINA Information Sciences 55, 1801 (2012); Influence factors of sparse microwave imaging radar system performance: approaches to waveform design and platform motion analysis SCIENCE CHINA Information Sciences 55, 2301 (2012); Coherent processing for ISAR imaging with sparse apertures SCIENCE CHINA Information Sciences 55, 1898 (2012); Sparse synthetic aperture radar imaging with optimized azimuthal aperture SCIENCE CHINA Information Sciences 55, 1852 (2012);. REVIEW .
Ursolic acid (UA) is a food-plant-derived natural product which has good anticancer activities and low toxicity. However, the poor water solubility of UA limits its application in clinic. To address this issue, we developed a carrier-free nanodrug by self-assembly of UA. Here, we showed that UA nanoparticles (NPs) have a near-spherical shape with a diameter of ∼150 nm. UA NPs exhibited higher antiproliferative activity; significantly caused apoptosis; decreased the expression of COX-2/VEGFR2/VEGFA; and increased the immunostimulatory activity of TNF-α, IL-6, and IFN-β and decreased the activity of STAT-3 in A549 cells in vitro. Furthermore, UA NPs could inhibit tumor growth and have the ability of liver protection in vivo. More importantly, UA NPs could significantly improve the activation of CD4+ T-cells, which indicated that UA NPs have the potential for immunotherapy. Overall, a carrier-free UA nanodrug may be a promising drug to further enhance their anticancer efficacy and immune function.
The rapid development of CRISPR/Cas9
systems has opened up tantalizing prospects to sensitize cancers to
chemotherapy using efficient targeted genome editing, but safety concerns
and possible off-target effects of viral vectors remain a major obstacle
for clinical application. Thus, the construction of novel nonviral
tumor-targeting nanodelivery systems has great potential for the safe
application of CRISPR/Cas9 systems for gene–chemo-combination
therapy. Here, we report a polyamidoamine-aptamer-coated hollow mesoporous
silica nanoparticle for the co-delivery of sorafenib and CRISPR/Cas9.
The core–shell nanoparticles had good stability, enabled ultrahigh
drug loading, targeted delivery, and controlled-release of the gene–drug
combination. The nanocomplex showed >60% EGFR-editing efficiency
without off-target effects in all nine similar sites, regulating the
EGFR-PI3K-Akt pathway to inhibit angiogenesis, and exhibited a synergistic
effect on cell proliferation. Importantly, the co-delivery nanosystem
achieved efficient EGFR gene therapy and caused 85% tumor inhibition
in a mouse model. Furthermore, the nanocomplex showed high accumulation
at the tumor site in vivo and exhibited good safety
with no damage to major organs. Due to these properties, the nanocomplex
provides a versatile delivery approach for efficient co-loading of
gene–drug combinations, allowing for precise gene editing and
synergistic inhibition of tumor growth without apparent side effects
on normal tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.