Materials with high thermal conductivity (κ) are of technological importance and fundamental interest. We grew cubic boron nitride (cBN) crystals with controlled abundance of boron isotopes and measured κ greater than 1600 watts per meter-kelvin at room temperature in samples with enriched 10B or 11B. In comparison, we found that the isotope enhancement of κ is considerably lower for boron phosphide and boron arsenide as the identical isotopic mass disorder becomes increasingly invisible to phonons. The ultrahigh κ in conjunction with its wide bandgap (6.2 electron volts) makes cBN a promising material for microelectronics thermal management, high-power electronics, and optoelectronics applications.
The densification of integrated circuits requires thermal management strategies and high thermal conductivity materials1–3. Recent innovations include the development of materials with thermal conduction anisotropy, which can remove hotspots along the fast-axis direction and provide thermal insulation along the slow axis4,5. However, most artificially engineered thermal conductors have anisotropy ratios much smaller than those seen in naturally anisotropic materials. Here we report extremely anisotropic thermal conductors based on large-area van der Waals thin films with random interlayer rotations, which produce a room-temperature thermal anisotropy ratio close to 900 in MoS2, one of the highest ever reported. This is enabled by the interlayer rotations that impede the through-plane thermal transport, while the long-range intralayer crystallinity maintains high in-plane thermal conductivity. We measure ultralow thermal conductivities in the through-plane direction for MoS2 (57 ± 3 mW m−1 K−1) and WS2 (41 ± 3 mW m−1 K−1) films, and we quantitatively explain these values using molecular dynamics simulations that reveal one-dimensional glass-like thermal transport. Conversely, the in-plane thermal conductivity in these MoS2 films is close to the single-crystal value. Covering nanofabricated gold electrodes with our anisotropic films prevents overheating of the electrodes and blocks heat from reaching the device surface. Our work establishes interlayer rotation in crystalline layered materials as a new degree of freedom for engineering-directed heat transport in solid-state systems.
The principal challenges in current thermoelectric power generation modules is the availability of stable, diffusion-resistant, lossless electrical and thermal metal-semiconductor contacts that do not degrade at the hot end nor...
Layered indium selenide (InSe) has emerged as a promising two-dimensional semiconductor due to its high electron mobility and direct optical bandgap in the few-layer limit. As InSe is integrated into high-performance electronic and optoelectronic systems, thermal management will become critical, thus motivating detailed characterization of intrinsic thermal properties. Here, we report the room-temperature thermal conductivity of exfoliated crystals of InSe along the through-plane and in-plane directions using conventional and beam offset time-domain thermoreflectance (TDTR), respectively. InSe crystals with varying thicknesses were prepared by mechanical exfoliation onto Si(100) wafers followed by immediate encapsulation with a 3-nm-thick AlOx passivation layer to prevent ambient degradation prior to coating with metal films for TDTR measurements. The measured thermal conductivity in the in-plane direction, Λin ≈ 8.5 ± 2 W/m K, is an order of magnitude higher than that in the through-plane direction, Λthrough ≈ 0.76±0.15 W/m K, which implies a high thermal anisotropy ≈11 ± 3. These relatively high anisotropy and low thermal conductivity compared to other layered semiconductors imply that InSe will require unique thermal management considerations when implemented in electronic, optoelectronic, and thermoelectric applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.