Salinity is one of the most important abiotic stress factors that is expanding its influence because of global climate change and global warming. It causes gene expression changes, a reduction in seed germination and related characteristics, and poor seedling establishment in many crop plants by creating a lower osmotic potential in the seedbed and/or toxic ion effects in germinated seeds. In recent years, seed priming has been considered a promising strategy in modern stress management to protect plants against stress conditions. This study was conducted to elucidate the effects of osmopriming with polyethylene glycol 6000 (PEG-6000) on seed germination, seedling growth and gene expression in the common vetch (Vicia sativa L.) in different saline conditions. Common vetch seeds were primed with PEG-6000 solutions having different osmotic potentials (0.00, -0.50, -0.75, -1.00, -1.25, and -1.50 MPa) for 12 hours. Control (un-primed) and primed seeds were germinated and seedlings were grown in different saline conditions (EC= zero, 4, 8 and 16 dS m -1 ). Furthermore, gene expression was compared in the primed seedlings in two different osmotic potentials (0.00 and -1.50 MPa) by microarray technology. Results demonstrated that germination percentage of common vetch seeds and seedling growth were diminished by high salinity. However, several priming treatments alleviated the adverse effects of high salinity on germination and early seedling growth of common vetch. The microarray showed that the expression of many genes in both stress and normal conditions was not significantly different.
Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding CASRP΄s archiving and manuscript policies encouraged to visit: http://www.casrp.co.uk/journals Abstract Selection of genotypes based on high value of heritability and forecasted genetic conditions would be an effective method for improvement of wheat cultivars. The present investigation was carried out to estimate the genetic variability of agro-physiological characters using biometrical genetic techniques in 20 bread wheat genotypes under irrigated condition. For this purpose an experiment was conducted to estimate the genetic parameters of some agro-physiological traits and their relationship with yield under Irrigated conditions. High genetic variability was observed between the genotypes for the characters grain yield (GY), chlorophyll a (Chl a), chlorophyll ab (Chl ab), quantum yield (QY), performance index (PI), relative water loss (RWL) and leaf chlorophyll content (LCC), therefore direct selection is effective for improvement of these traits.Total chlorophyll content (Chl ab), chlorophyll b (Chl b) and PI revealed high heritability and co-heritability with yield. Hence, they can be used as indirect selection for the improvement of yield under irrigated condition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.