All body pigment cells in vertebrates are derived from the neural crest. In fish the neural crest can generate up to six different types of pigment cells, as well as various non-pigmented derivatives. In mouse and zebrafish, extensive collections of pigmentation mutants have enabled dissection of many aspects of pigment cell development, including fate specification, survival, proliferation and differentiation. A collection of spontaneous mutations collected from wild medaka (Oryzias latipes) populations and maintained at Nagoya University includes more than 40 pigmentation mutations. The descriptions of their adult phenotypes have been previously published by Tomita and colleagues (summarised in Medaka (Killifish) Biology and Strains, 1975), but the embryonic phenotypes have not been systematically described. Here we examine these embryonic phenotypes, paying particular attention to the likely defect in pigment cell development in each, and comparing the spectrum of defects to those in the zebrafish and mouse collections. Many phenotypes parallel those of identified zebrafish mutants, although pigment cell death phenotypes are largely absent, presumably due to the different selective pressures under which the mutants were isolated. We have identified mutant phenotypes that may represent the Mitf/Kit pathway of melanophore specification and survival. We use in situ hybridisation with available markers to confirm a key prediction of this hypothesis. We also highlight a set of novel phenotypes not seen in the zebrafish collection. These mutants will be a valuable resource for pigment cell and neural crest studies and will strongly complement the mutant collections in other vertebrates.
A large-scale mutagenesis screen was performed in Medaka to identify genes acting in diverse developmental processes. Mutations were identified in homozygous F3 progeny derived from ENU-treated founder males. In addition to the morphological inspection of live embryos, other approaches were used to detect abnormalities in organogenesis and in specific cellular processes, including germ cell migration, nerve tract formation, sensory organ differentiation and DNA repair. Among 2031 embryonic lethal mutations identified, 312 causing defects in organogenesis were selected for further analyses. From these, 126 mutations were characterized genetically and assigned to 105 genes. The similarity of the development of Medaka and zebrafish facilitated the comparison of mutant phenotypes, which indicated that many mutations in Medaka cause unique phenotypes so far unrecorded in zebrafish. Even when mutations of the two fish species cause a similar phenotype such as one-eyed-pinhead or parachute, more genes were found in Medaka than in zebrafish that produced the same phenotype when mutated. These observations suggest that many Medaka mutants represent new genes and, therefore, are important complements to the collection of zebrafish mutants that have proven so valuable for exploring genomic function in development.
Caspase-8, a member of the caspase family, plays an important role in apoptotic signal transduction in mammals. Here we report the identification and characterization of the caspase-8 (casp8) gene in the zebrafish Danio rerio. The zebrafish casp8 gene has a genomic organization similar to mammalian casp8 genes, consisting of 10 exons. By chromosome mapping, we found that casp8 maps on linkage group 6 (LG6), a zebrafish chromosome segment orthologous to the long arm of human Chr. 2, which carries CASP8. In contrast, the zebrafish casp10-like gene and the cflar gene separately localize on LG9 and LG11, respectively, and these genes form a cluster with CASP8 on the human chromosome. This chromosomal segregation is unique to fish but not other vertebrates. Furthermore, we examined the function of zebrafish Casp8 protein in mammalian cells, and showed that it has pro-apoptotic activity when overexpressed. In addition, this molecule was capable of transmitting apoptotic signals mediated through not only Fas but also the TNF receptor in mouse Casp8-deficient cells. Expression analysis showed that casp8 is maternally expressed, and transcripts continue to be present throughout embryogenesis and into larval stages. These results show that zebrafish casp8 has a structure and function similar to mammalian CASP8 orthologs, and our study suggests that the role of caspase-8 in the apoptotic signal pathway has been conserved over at least 450 million years of vertebrate evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.