Using diluted HF (0.05-0.1%) as cleaning solutions, experimental results showed that the etching behavior of Cu strongly depended on the dissolved oxygen (DO) concentration and the chamber atmosphere conditions. On the contrary, the Cu etch rate was not affected by the HF concentration. A complete reverse trend was observed for plasma-treated OSG2.4. The etching behavior of plasma-treated OSG2.4 was not affected by DO concentration and chamber atmosphere conditions, but was strongly dependent on the HF concentration. The etch rate determined on patterned structure with low-k exposed, using CD measurements, confirmed the results obtained on blanket plasma-treated OSG2.4 material.
Etching of molybdenum was demonstrated in two steps. Mo was first oxidized in an ozone gas ambient to form molybdenum oxide. It is shown that comparable oxide thicknesses can be obtained in ozone and oxygen but at lower temperatures for the former. Initial oxide growth is fast but then considerably slows down due to its diffusion-limited character. The metal-oxide thickness can be controlled by temperature and defines the amount of metal etch per cycle (EPC). XPS analysis showed that the thermally grown oxide is MoO3. In the second, wet-chemical step, MoO3 was dissolved selectively toward the Mo metal using an aqueous solution. The dissolution rate of amorphous MoO3 formed in O3 at temperatures below ∼230 °C is fast, but the dissolution of MoO3 formed at Tox > 230 °C was shown to be incomplete. Cross-section TEM showed a matrix of amorphous oxide with crystallized MoO3 islands, the latter more difficult to dissolve. However, the crystalline phase could be completely and selectively removed using a more concentrated NH4OH solution at an elevated temperature (70 °C). The EPC was determined for temperatures between 150 and 290 °C. The etch rates increased with temperature from 1–2 nm/cycle at 150 °C to 5–6 nm/cycle at 290 °C. This hybrid thermal-wet etching sequence is well suited for vertical and lateral recess etching as it shows a controlled and isotropic dissolution of polycrystalline Mo at the nanoscale. Furthermore, the process shows a progressive surface smoothening upon increasing the number of etching cycles.
TiN Hard Mask (TiN-HM) integration scheme has been widely used for BEOL patterning in order to avoid ultra low-k (ULK) damage during plasma-ash process [1]. As the technology node advances, new integration schemes have to be used for the patterning of features below 80 nm pitch with 193 nm immersion lithography. In particular, thicker TiN-HM is necessary in order to ensure Self-Aligned-Via (SAV) integration which resolves via-metal short yield and TDDB issues caused by Litho-Etch-Litho-Etch (LELE) misalignment [2, 3]. The Cu filling process is significantly more difficult if the thick TiN is not removed because of the high aspect ratio of the structures. Moreover, with the use of TiN hard mask, a time-dependent crystal growth (TiCOF) residue may forms between line etch and metal deposition [4, 5], also hindering copper filling. Post-Etch-Treatment after line etching is one solution to the problem but N2plasma is not efficient enough to suppress the residue completely [6], and the CH4treatment proposed in [5] may be difficult to implement for 14 nm node, thus an efficient wet strip and clean provides a better solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.