The biomechanical adaptation of the arterial wall to hypertension has been studied extensively in recent years; however, the exact biomechanical contribution of vascular smooth muscle cells (VSMCs) during the adaptation process in conduit vessels is not known. We induced hypertension in 8 wk old Wistar rats by total ligation of the aorta between the two kidneys. Mean blood pressure increased from 92 +/- 2 (mean +/- SE) mm Hg to approximately 150 mmHg. Rats were sacrificed 2, 4, and 8 d after surgery and the left common carotid artery was excised for analysis. Wall thickness increased by 18% in 8 d and the opening angle by 32% in 4 d. The elastic properties were measured under normal VSMC tone (i.e., the amount of VSMC tone under normal conditions also called basal VSMC tone or normal resting VSMC tone), under maximally contracted VSMC (NE, 5 x 10(-7) mol/L) and under totally relaxed VSMC conditions (papaverine, 10(-4) mol/L). The most pronounced modifications were the changes in elastic properties related to normal VSMC tone. The functional contraction ratio at 100 mm Hg, defined as the relative contraction under normal conditions (normal VSMC tone), increased by 439% 4 d after the induction of hypertension. The total contraction capacity of the VSMC increased by 38% within 8 d. The changes in normal VSMC tone led to important changes in the mechanical properties of the arterial wall. Under normal VSMC conditions, compliance at mean pressure (148 mm Hg) increased by 159% within 8 d, whereas in the absence of VSMC tone, compliance did not increase significantly. We conclude that in conduit vessels, the VSMC, which is the sensing and effecting element of the adaptation process, is subjected to large-scale changes during the early phase of arterial adaptation to acute hypertension.
We studied the changes in vascular smooth muscle (VSM) cell tone during the adaptation of rat common carotids to induced hypertension. Hypertension was induced in 8 week old male Wistar rats by total ligation of the aorta between the two kidneys. Mean blood pressure increased abruptly from 92 +/- 2mm Hg (mean +/- SE) to 145 +/- 4 mm Hg and remained constant thereafter. Rats were sacrificed 2, 4, 8, and 56 days after surgery and the left common carotid artery was excised for analysis. Pressure-diameter curves were measured in vitro under normal, maximally contracted, and totally relaxed VSM. The VSM tone was analyzed in terms of its basal tone (active stress at low strains) and its myogenic tone (increase in active stress at high strains). Our results show that the capacity of the VSM to develop maximal active stress is not altered in hypertension. Basal tone, however, increases rapidly in the acute hypertension phase (2-8 days postsurgery) and drops to nearly control values at 56 days postsurgery. Also, the onset of myogenic response decreases to lower strains following the step change in pressure, to be restored back to control levels at 56 days postsurgery. We conclude that VSM adaptation is most significant in the acute hypertension phase and acts as a first, rapid defense mechanism for the arterial wall. The VSM tone returns back to normal levels once the slower geometrical and structural remodeling is developed sufficiently to restore the biomechanical environment and function of the arterial wall to control levels.
We investigated the effect of the female hormone 17β-estradiol (E2) and the hormone mimic bisphenol A (BPA) on the proliferation and differentiation of rat neural stem/progenitors cells (NS/ PCs) cultured from the telencephalon of embryonic day-15 rats. Basic fibroblast growth factor (FGF-2) is a potent mitogen of early generated NS/PCs, and is used for the proliferation of NS/ PCs in vitro. Administration of E2 or BPA alone to the NS/PCs stimulated their proliferation in the absence but not in the presence of FGF-2. E2-or BPA-treatment increased the ratio of the oligodendrocytes generated from the NS/PCs to total cells; however, this ratio did not change when the cells were stimulated with platelet-derived growth factor (PDGF), a mitogen for oligodendrocyte precursors, or with neurotrophin-3, an oligogenic factor for glial progenitor cells. These results suggest that estrogens would influence the fate of NS/PCs when the cells are poorly supplied with mitogens or differentiation factors during the early stages of neurogenesis.
Our previous study indicated that both 17β-estradiol (E2), known to be an endogenous estrogen, and bisphenol A (BPA), known to be a xenoestrogen, could positively influence the proliferation or differentiation of neural stem/progenitor cells (NS/PCs). The aim of the present study was to identify the signal transduction pathways for estrogenic activities promoting proliferation and differentiation of NS/PCs via well known nuclear estrogen receptors (ERs) or putative membrane-associated ERs. NS/PCs were cultured from the telencephalon of 15-day-old rat embryos. In order to confirm the involvement of nuclear ERs for estrogenic activities, their specific antagonist, ICI-182,780, was used. The presence of putative membrane-associated ER was functionally examined as to whether E2 can activate rapid intracellular signaling mechanism. In order to confirm the involvement of membrane-associated ERs for estrogenic activities, a cell-impermeable E2, bovine serum albumin-conjugated E2 (E2-BSA) was used. We showed that E2 could rapidly activate extracellular signal-regulated kinases 1/2 (ERK 1/2), which was not inhibited by ICI-182,780. ICI-182,780 abrogated the stimulatory effect of these estrogens (E2 and BPA) on the proliferation of NS/PCs, but not their effect on the differentiation of the NS/PCs into oligodendroglia. Furthermore, E2-BSA mimicked the activity of differentiation from NS/PCs into oligodendroglia, but not the activity of proliferation. Our study suggests that (1) the estrogen induced proliferation of NS/PCs is mediated via nuclear ERs; (2) the oligodendroglial generation from NS/PCs is likely to be stimulated via putative membrane-associated ERs.
We presently found that medium-chain fatty acids (MCFAs) with 8-12 carbons and their esters facilitated activation (phosphorylation) of mitogen-activated protein kinases (MAPK)/extracellular signal-regulated kinases (ERK) 1/2 of cultured embryonic cortical/hippocampal neurons. In particular, trans-2-decenoic acid ethyl ester (DAEE) had the most potent activity. Additionally, DAEE activated phosphatidylinositol 3-kinase and cAMP-response element binding protein (CREB), suggesting that DAEE generates similar intracellular signal as neurotrophins. Therefore, details of the signal elicited by DAEE were examined in comparison with those of a neurotrophin, brain-derived neurotrophic factor (BDNF). We found that 1) DAEE phosphorylated MAPK/ERK1/2 via MEK activation without the involvement of tyrosine kinases of neurotrophin Trk receptors; 2) DAEE activated CREB predominantly through MAPK/ERK1/2 activation, not through other pathways such as cAMP/protein kinase A; and 3) DAEE increased the expression of mRNAs of BDNF and neurotrophin-3 and the protein content of synapse-specific proteins such as synaptophysin, synapsin-1, and syntaxin. Based on these observations we propose that DAEE and some other derivatives of MCFAs having neurotrophin-like neurotrophic activities may become therapeutic tools for certain neurological or psychiatric disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.