During the last few years the interest in the indium nitride (InN) semiconductor has been remarkable. There have been significant improvements in the growth of InN films. High quality single crystalline InN film with two-dimensional growth and high growth rate are now routinely obtained. The background carrier concentration and Hall mobility have also improved. Observation of strong photoluminescence near the band edge is reported very recently, leading to conflicts concerning the exact band gap of InN. Attempts have also been made on the deposition of InN based heterostructures for the fabrication of InN based electronic devices. Preliminary evidence of two-dimensional electron gas accumulation in the InN and studies on InN-based field-effect transistor structure are reported. In this article, the work accomplished in the InN research, from its evolution to till now, is reviewed. The In containing alloys or other nitrides (AlGalnN, GaN, AlN) are not discussed here. We mainly concentrate on the growth, characterization, and recent developments in InN research. The most popular growth techniques, metalorganic vapor phase epitaxy and molecular beam epitaxy, are discussed in detail with their recent progress. Important phenomena in the epitaxial growth of InN as well as the problems remaining for future stuby are also discussed
A survey of most recent studies of optical absorption, photoluminescence, photoluminescence excitation, and photomodulated reflectance spectra of single-crystalline hexagonal InN layers is presented. The samples studied were undoped n-type InN with electron concentrations between 6 Â 10 18 and 4 Â 10 19 cm --3 . It has been found that hexagonal InN is a narrow-gap semiconductor with a band gap of about 0.7 eV, which is much lower than the band gap cited in the literature. We also describe optical investigations of In-rich In x Ga 1--x N alloy layers (0.36 < x < 1) which have shown that the bowing parameter of b $ 2.5 eV allows one to reconcile our results and the literature data for the band gap of In x Ga 1--x N alloys over the entire composition region. Special attention is paid to the effects of post-growth treatment of InN crystals. It is shown that annealing in vacuum leads to a decrease in electron concentration and considerable homogenization of the optical characteristics of InN samples. At the same time, annealing in an oxygen atmosphere leads to formation of optically transparent alloys of InN-In 2 O 3 type, the band gap of which reaches approximately 2 eV at an oxygen concentration of about 20%. It is evident from photoluminescence spectra that the samples saturated partially by oxygen still contain fragments of InN of mesoscopic size.
Optical gain spectra of ZnO epitaxial thin films have been measured by using a pump–probe technique. The optical gain is thought to be due to electron–hole plasma. In the differential absorption spectra, we observed saturation of the exciton absorption, band-gap renormalization, as well as the optical gain. From the temporal changes of these structures, the dynamical properties of the photoexcited carriers are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.