The remarkable plasticity of marrow stromal cells (MSCs) after transplantation to models of neurological disease and injury has been described. In this report, we investigated the plasticity and long-term survival of MSCs transplanted into the normal brain. MSCs were isolated from green fluorescent protein (GFP) transgenic rats and double-labeled with 5-bromo-2-deoxyuridine (BrdU) and bis benzamide (BBZ) prior to transplantation into the adult hippocampus or striatum. Surgery elicited an immediate inflammatory response. MSC grafts were massively infiltrated by ED1-positive microglia/macrophages and surrounded by a marked astrogliosis. By 14 days, graft volume had retracted and GFP immunoreactivity was absent, indicating complete donor rejection. Consequently, MSCs did not exhibit plasticity formerly identified in other studies. However, BrdU-and BBZ-labeled cells were detected up to 12 weeks. Control transplants of nonviable MSCs demonstrated the transfer of donor labels to host cells. Unexpectedly, BrdU labeling was colocalized to host phagocytes, astrocytes, and neurons in both regions. Our results indicate that MSCs transplanted to the intact adult brain are rejected by an inflammatory response. Moreover, use of the traditional cell labels BrdU and BBZ may provide a misleading index of donor survival and differentiation after transplantation. STEM CELLS 2006;24:2483-2492
We recently differentiated adult rat and human bone marrow stromal cells (MSCs) into presumptive neurons in cell culture. To determine whether the MSCs assume neuronal functions in vivo, we now characterize for the first time engraftment, migration, phenotypic expression, and long-term survival after infusion into embryonic day 15.5 (E15.5) rat ventricles in utero. By E17.5, donor cells formed discrete spheres in periventricular germinal zones, suggesting preferential sites of engraftment. The cells expressed progenitor vimentin and nestin but not mature neuronal markers. By E19.5, a subset assumed elongated migratory morphologies apposed to radial nestin-positive fibers running through the cortical white matter and plate, suggesting migration along radial glial processes. Cells remaining in germinal zones extended long, vimentin-positive fibers into the parenchyma, suggesting that the MSCs generated both migratory neurons and guiding radial glia. Consistent with this suggestion, Ͼ50% of cultured mouse MSCs expressed the neuroprecursor/radial glial protein RC2. From E19.5 to postnatal day 3, MSCs populated distant areas, including the neocortices, hippocampi, rostral migratory stream, and olfactory bulbs. Whereas donor cells confined to the subventricular zone continued to express nestin, cells in the neocortex and midbrain expressed mature neuronal markers. The donor cells survived for at least 2 months postnatally, the longest time examined. Confocal analysis revealed survival of thousands of cells per cubic millimeter in the frontal cortex and olfactory bulb at 1 month. In the cortex and bulb, 98.6 and 77.3% were NeuN (neuronal-specific nuclear protein) positive, respectively. Our observations suggest that transplanted adult MSCs differentiate in a regionally and temporally specific manner.
Stem cells hold promise to treat diseases currently unapproachable, including Parkinson's disease, liver disease and diabetes. Seminal research has demonstrated the ability of embryonic and adult stem cells to differentiate into clinically useful cell types in vitro and in vivo. More recently, the potential of fetal stem cells derived from extra-embryonic tissues has been investigated. Fetal stem cells are particularly appealing for clinical applications. The cells are readily isolated from tissues normally discarded at birth, avoiding ethical concerns that plague the isolation embryonic stem cells. Extra-embryonic tissues are large, potentially increasing the number of stem cells that can be extracted. Lastly, the generation and sequestration of cells that form extra-embryonic tissues occurs early in development and may endow resident stem cell populations with enhanced potency. In this review we summarize recent work examining the plasticity and clinical potential of fetal stem cells isolated from extra-embryonic tissues.
Our findings suggest that intrinsic characteristics of mesenchymal cells may stimulate host inflammation, and thus may not represent an ideal donor source for transplantation to the adult brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.