A sequential steering scenario is investigated, where multiple Bobs aim at demonstrating steering using successively the same half of an entangled quantum state. With isotropic entangled states of local dimension d, the number of Bobs that can steer Alice is found to be N Bob ∼ d/ log d, thus leading to an arbitrary large number of successive instances of steering with independently chosen and unbiased inputs. This scaling is achieved when considering a general class of measurements along orthonormal bases, as well as complete sets of mutually unbiased bases. Moreover, we show that similar results can be obtained in an anonymous sequential scenario, where none of the Bobs know their position in the sequence. Finally, we briefly discuss the implication of our results for sequential tests of Bell nonlocality.
U niquely among the sciences, quantum cryptography has driven both foundational research as well as practical real-life applications. We review the progress of quantum cryptography in the last decade, covering quantum key distribution and other applications. Quanta 2017; 6: 1-47.
In the counterfactual cryptography scheme proposed by Noh (2009), the sender Alice probabilistically transmits classical information to the receiver Bob without the physical travel of a particle. Here we generalize this idea to the distribution of quantum entanglement. The key insight is to replace their classical input choices with quantum superpositions. We further show that the scheme can be generalized to counterfactually distribute multi-partite cat states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.