Autonomous “Things” is becoming the future trend as the role, and responsibility of IoT keep diversifying. Its applicability and deployment need to re-stand technological advancement. The versatile security interaction between IoTs in human-to-machine and machine-to-machine must also endure mathematical and computational cryptographic attack intricacies. Quantum cryptography uses the laws of quantum mechanics to generate a secure key by manipulating light properties for secure end-to-end communication. We present a proof-of-principle via a communication architecture model and implementation to simulate these laws of nature. The model relies on the BB84 quantum key distribution(QKD) protocol with two scenarios, without and with the presence of an eavesdropper via the interception-resend attack model from a theoretical, methodological, and practical perspective. The proposed simulation initiates communication over a quantum channel for polarized photon transmission after a pre-agreed configuration over a Classic Channel with parameters. Simulation implementation results confirm that the presence of an eavesdropper is detectable during key generation due to Heisenberg’s uncertainty and no-cloning principles. An eavesdropper has a 0.5 probability of guessing transmission qubit and 0.25 for the polarization state. During simulation re-iterations, a base-mismatch process discarded about 50 percent of the total initial key bits with an Error threshold of 0.11 percent.
Automated Driving Systems (ADSs) commend a substantial reduction of human-caused road accidents while simultaneously lowering emissions, mitigating congestion, decreasing energy consumption and increasing overall productivity. However, achieving higher SAE levels of driving automation and complying with ISO26262 C and D Automotive Safety Integrity Levels (ASILs) is a multi-disciplinary challenge that requires insights into safety-critical architectures, multi-modal perception and real-time control. This paper presents an assorted effort carried out in the European H2020 ECSEL project—PRYSTINE. In this paper, we (1) investigate Simplex, 1oo2d and hybrid fail-operational computing architectures, (2) devise a multi-modal perception system with fail-safety mechanisms, (3) present a passenger vehicle-based demonstrator for low-speed autonomy and (4) suggest a trust-based fusion approach validated on a heavy-duty truck.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.