The epidemiology of meningococcal disease varies by geography and time. Whole-genome sequencing of Neisseria meningitidis serogroup X isolates from sub-Saharan Africa and Europe showed that serogroup X emergence in sub-Saharan Africa resulted from expansion of particular variants within clonal complex 181. Virulence of these isolates in experimental mouse models was high.
The emergence of Neisseria meningitidis serogroup X (NmX) in the African meningitis belt has urged the development of diagnostic tools and vaccines for this serogroup, especially following the introduction of a conjugate vaccine against N. meningitidis serogroup A (NmA). We have developed and evaluated a new rapid diagnostic test (RDT) for detecting the capsular polysaccharide (cps) antigen of this emerging serogroup. Whole inactivated NmX bacteria were used to immunize rabbits. Following purification by affinity chromatography, the cpsX-specific IgG antibodies were utilized to develop an NmX-specific immunochromatography dipstick RDT. The test was validated against purified cpsX and meningococcal strains of different serogroups. Its performance was evaluated against that of PCR on a collection of 369 cerebrospinal fluid (CSF) samples obtained from patients living in countries within the meningitis belt (Cameroon, Côte d'Ivoire, and Niger) or in France. The RDT was highly specific for NmX strains. Cutoffs of 10 5 CFU/ml and 1 ng/ml were observed for the reference NmX strain and purified cpsX, respectively. Sensitivity and specificity were 100% and 94%, respectively. A high agreement between PCR and RDT (Kappa coefficient, 0.98) was observed. The RDT gave a high positive likelihood ratio and a low negative likelihood (0.07), indicating almost 100% probability of declaring disease or not when the test is positive or negative, respectively. This unique NmX-specific test could be added to the available set of RDT for the detection of meningococcal meningitis in Africa as a major tool to reinforce epidemiological surveillance after the introduction of the NmA conjugate vaccine. N eisseria meningitidis is an exclusively human capsulated bacterium that can provoke severe invasive infections, such as meningitis and septicemia (1). Meningococcal disease is still a major public health concern due to potential epidemic spread. While the disease occurs sporadically in Europe and North America, it is responsible for major recurrent epidemics within the African meningitis belt (2). The bacterial capsular polysaccharide determines the 12 N. meningitidis serogroups currently described. Six serogroups (A, B, C, Y, W, and X) are responsible for the vast majority of cases of meningococcal disease worldwide. However, they differ in their global frequencies and geographical distribution (3). This distribution impacts vaccination strategies, which for the most part involve established polysaccharide-based vaccines against serogroups A, C, Y, and W. Besides, an innovative recombinant protein-based vaccine was recently licensed in Europe and Australia against meningococci of serogroup B (4). This multicomponent vaccine targets conserved proteins among meningococci, regardless of their serogroup. Therefore, it has the potential to cover non-serogroup-B isolates, such as those of serogroup X (5). In the meningitis belt, N. meningitidis serogroup A (NmA) predominated prior to the introduction of the NmA polysaccharide-protein conjugate va...
Meningococcal meningitis remains a life-threatening disease worldwide, with high prevalence in the sub-Saharan meningitis belt. A rapid diagnosis is crucial for implementing adapted antimicrobial treatment. We describe the performances of a new immunochromatographic test (MeningoSpeed, BioSpeedia, France) for detecting and grouping Neisseria meningitidis. Cerebrospinal fluids (CSFs) were collected from 5 African countries and France. For the rapid diagnostic test (RDT), the CSF sample was deposited on each of the 3 cassettes for a total volume of 90 μl. The results of the RDT were compared to those of a reference multiplex PCR assay detecting the major serogroups of N. meningitidis on 560 CSF specimens. Five specimens were found uninterpretable by RDT (0.9%). The results of interpretable specimens were as follows: 305 positive and 212 negative samples by both techniques, 14 positive by PCR only, and 24 positive by RDT only (sensitivity, specificity, and positive and negative predictive values of 92.7%, 93.8%, 95.6%, and 89.8%, respectively, with an accuracy of 93.2% and a kappa test of 0.89; P < 0.05). From 319 samples positive by PCR for serogroups A, C, W, X, or Y, the grouping results were concordant for 299 specimens (sensitivity of 93.0%, 74.4%, 98.1%, 100%, and 83.3% for serogroups A, C, W, X, and Y, respectively). The MeningoSpeed RDT exhibited excellent performances for the rapid detection of N. meningitidis antigens. It can be stored at room temperature, requires a minimal amount of CSF, is performed in 15 minutes or less, and is easy to use at bedside.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.