Recent publications have shown that the segmentation accuracy of modern-day convolutional neural networks (CNN) applied on cardiac MRI can reach the inter-expert variability, a great achievement in this area of research. However, despite these successes, CNNs still produce anatomically inaccurate segmentations as they provide no guarantee on the anatomical plausibility of their outcome, even when using a shape prior. In this paper, we propose a cardiac MRI segmentation method which always produces anatomically plausible results. At the core of the method is an adversarial variational autoencoder (aVAE) whose latent space encodes a smooth manifold on which lies a large spectrum of valid cardiac shapes. This aVAE is used to automatically warp anatomically inaccurate cardiac shapes towards a close but correct shape. Our method can accommodate any cardiac segmentation method and convert its anatomically implausible results to plausible ones without affecting its overall geometric and clinical metrics. With our method, CNNs can now produce results that are both within the inter-expert variability and always anatomically plausible.
In this paper, we propose a fully automatic MRI cardiac segmentation method based on a novel deep convolutional neural network (CNN) designed for the 2017 ACDC MICCAI challenge. The novelty of our network comes with its embedded shape prior and its loss function tailored to the cardiac anatomy. Our model includes a cardiac centerof-mass regression module which allows for an automatic shape prior registration. Also, since our method processes raw MR images without any manual preprocessing and/or image cropping, our CNN learns both high-level features (useful to distinguish the heart from other organs with a similar shape) and low-level features (useful to get accurate segmentation results). Those features are learned with a multi-resolution conv-deconv "grid" architecture which can be seen as an extension of the U-Net. Experimental results reveal that our method can segment the left and right ventricles as well as the myocardium from a 3D MRI cardiac volume in 0.4 second with an average Dice coefficient of 0.90 and an average Hausdorff distance of 10.4 mm.
Skin lesion segmentation in dermoscopic images is still a challenge due to the low contrast and fuzzy boundaries of lesions. Moreover, lesions have high similarity with the healthy regions in terms of appearance. In this paper, we propose an accurate skin lesion segmentation model based on a modified conditional generative adversarial network (cGAN). We introduce a new block in the encoder of cGAN called factorized channel attention (FCA), which exploits both channel attention mechanism and residual 1-D kernel factorized convolution. The channel attention mechanism increases the discriminability between the lesion and non-lesion features by taking feature channel interdependencies into account. The 1-D factorized kernel block provides extra convolutions layers with a minimum number of parameters to reduce the computations of the higher-order convolutions. Besides, we use a multi-scale input strategy to encourage the development of filters which are scale-variant (i.e., constructing a scale-invariant representation). The proposed model is assessed on three skin challenge datasets: ISBI2016, ISBI2017, and ISIC2018. It yields competitive results when compared to several state-of-the-art methods in terms of Dice coefficient and intersection over union (IoU) score. The codes of the proposed model are publicly available at https://github.com/vivek231/Skin-Project.INDEX TERMS Skin lesion, conditional generative adversarial network, channel attention, factorized kernel, residual convolution.
One crucial parameter to evaluate the state of the heart after myocardial infarction (MI) is the viability of the myocardial segment, i.e., if the segment recovers its functionality upon revascularization. MRI performed several minutes after the injection of a contrast agent (delayed enhancement-MRI or DE-MRI) is a method of choice to evaluate the extent of MI, and by extension, to assess viable tissues after an injury. The Emidec dataset is composed of a series of exams with DE-MR images in short axis orientation covering the left ventricle from normal cases or patients with myocardial infarction, with the contouring of the myocardium and diseased areas (if present) from experts in the domains. Moreover, classical available clinical parameters when the patient is managed by an emergency department are provided for each case. To the best of our knowledge, the Emidec dataset is the first one where annotated DE-MRI are combined with clinical characteristics of the patient, allowing the development of methodologies for exam classification as for exam quantification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.