A cavitating-flow calculation method is presented, based on the panel technique with minimization of a certain vector characterizing the discretion error which may become important under cavitating conditions. Several practical examples are presented: partial cavitation on an isolated foil, cavitation behind a blunt-ended body, and the problem of two cavities around an axisymmetrical body. In the case of partial cavitation, the Joukowski condition and tangential outlet condition can be satisfied by the form of the error vector. The cavity-wake modelling problem is not extensively dealt with. It is shown, however, that in order to obtain a satisfactory cavity length/cavitation number ratio, it is probably necessary to introduce a displacement thickness behind the near wake of the cavity which does not close on the body according to a separated flow scheme analagous to the wake, as introduced previously by Yagamuchi & Kato (1983). The method is shown to be capable, after a few minor modifications, of dealing with the case of bodies with a rounded rear edge. Even so, the advantage is essentially didactic as the problem of predicting the position of separation points is not treated. The problem of two cavities around axisymmetrical bodies has a more obvious practical interest. The nonlinear closure condition of each cavity is exactly satisfied by an iterative resolution scheme in which allowance is made for the presence of an axial gravity field.
Among the measurement and control systems of gas turbine engines, a recent new issue is the possibility of performing unsteady pressure measurements to detect flow anomalies in an engine or to evaluate loads on aerodynamic surfaces. A possible answer to this demand could be extending the use of well known and widely used transmission line systems, which have been applied so far to steady monitoring, to unsteady measurements thanks to proper dynamic modeling and compensation. Despite the huge number of models existing in the literature, a novel method has been developed, which is at the same time easy-to-handle, flexible and capable of reproducing the actual physics of the problem. Furthermore, the new model is able to deal with arbitrary complex networks of lines and cavities, and thus its applicability is not limited to series-connected systems. The main objectives of this paper are to show the derivation of the model, its validation against experimental tests and example of its applicability.
A method for calculating partially cavitating flows is presented. This method respects the impermeability condition on the profile in the vicinity of the cavity. The difficulties inherent in a scheme which gives a solution depending on the internal field organization, when the cavity is open, are analyzed. Several closure models are compared with the experimental results. This comparison shows the great variety of models that would have to be considered in order to give a proper account of the t(ac) law for three types of geometry. The pressure recovery study for one of the three geometries shows that pressure recovery can be simulated by a distribution of sinks distributed immediately downstream of the cavity, followed by a positive flux zone farther downstream. Validated by means of a finite-element calculation, the method proves its capability to take into account the effect of nonparallel confining walls placed very close around a foil of very small relative thickness.
Partially cavitating flow around a hydrofoil in a confined two-dimensional flow is presented. The calculation method, based on the singularities technique combined with a minimisation method, is adapted to open configurations. With this extension, cavity wakes not necessarily merging with the upper-side of the foil can be treated. In the case of subcavitating flow, a boundary layer calculated is made, indicating a separation point downstream of which the flow becomes separated. In this area, an imaginary streamline (wake) is introduced to simulate the effect of separation. The choice of different forms of wake clearly shows the influence of wake form on the value of results. The process is extended to the case of cavitating flow for wakes developing behind the cavity. The method is applied to a test cavitating hydrofoil placed in a tunnel. Several cavity wakes progressively diverging from the foil were tested. The results obtained, compared with experimental results, show the great importance of achieving more accurate modelling of flow conditions behind cavities.
L'étude des écoulements autour des ailes cavitantes ou ventilées présente un intérêt technique considérable puisque son champ d'application concerne tous les mouvements relatifs rapides de profils ou d'obstacles au sein d'un liquide. On peut citer à titre d'exemple les ailes sous-marines et les pales d'hélices des navires rapides, les pompes supercavitantes, les entrées d'eau. Les études dont nous souhaitons exposer les résultats concernent des ailes portantes à cavitation de culot -ou cavitantes à la base-dont l'extrados mouillé permet d'escompter que la finesse ne s'abaisse pas au-dessous de 9 en écoulement tridimensionnel et de 12 ou 14 en configuration bidimensionnelle. La pression dans la cavité peut résulter de la présence de la vapeur seule ou de vapeur et d'air entraîné ou injecté. Dans les deux cas, la pression de cavité constitue l'un des paramètres essentiels du phéno-mène et l'hydrodynamique globale ne dépend pas d'une manière appréciable de la nature du gaz de la cavité, comme on peut aisément le vérifier par l'expérience. Techniquement, la ventilation retient l'attention par son influence prépondérante sur la traînée qu'elle réduit par l'augmentation de la pression de culot. L'utilisation des ailes ventilées tronquées se justifie par le fait que la répartition judicieuse des pressions sur l'extrados encore mouillé limite à des valeurs acceptables la diminution de portance que ne manquerait pas d'engendrer l'augmentation de pression dans la cavité. Bien entendu, les conditions de fonctionnement des ailes impliquent qu'on veille soigneusement à éviter toute cavitation de bord d'attaque.Lorsque les ailes circulent à très grande vitesse, les couches limites qui s'établissent sur les parois sont très minces et dans leur environnement proche la répartition des pressions locales ne s'écarte guère de celle du champ irrotationnel associé aux frontières effectives du profil. Si de plus l'aile et sa cavité forment un ensemble très allongé dans la direction privilégiée du déplacement (généralement la direction horizontale) on est fondé à penser que toute modélisation respectant au moins la géométrie de l'aile permet d'accéder sans trop d'erreur aux propriétés globales -portance, traînée, momentdont la connaissance est nécessaire au constructeur. En écoulement bidimensionnel, cette idée se trouve à la base de développements qui ont connu jusqu'à un passé proche un succès considérable [1] à [3] et il est commode de l'évoquer comme point de départ de recherches qui ont fait l'objet de travaux théoriques et expérimentaux récents. * * *De fait, l'observation expérimentale sur ce sujet joue un rôle assez déterminant et sa pratique inspire les principales remarques qui suivent. D'abord, la conduite d'essais de cavitation requiert des moyens importants (dimensions des tunnels ou des canaux, puissances mises en jeu) et assez performants. A l'Institut de Mécanique de Grenoble un effort particulier a été accompli [4] de manière qu'on puisse atteindre des nombres de cavitation a et des dépressions relatives de v cavités a...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.